z test for a single proportion - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

$z$ test for a single proportion
Pearson correlation
Independent variableVariable 1
NoneOne quantitative of interval or ratio level
Dependent variableVariable 2
One categorical with 2 independent groupsOne quantitative of interval or ratio level
Null hypothesisNull hypothesis
$\pi = \pi_0$
$\pi$ is the population proportion of "successes"; $\pi_0$ is the population proportion of successes according to the null hypothesis
$\rho = \rho_0$
$\rho$ is the unknown Pearson correlation in the population, $\rho_0$ is the correlation in the population according to the null hypothesis (usually 0)
Alternative hypothesisAlternative hypothesis
Two sided: $\pi \neq \pi_0$
Right sided: $\pi > \pi_0$
Left sided: $\pi < \pi_0$
Two sided: $\rho \neq \rho_0$
Right sided: $\rho > \rho_0$
Left sided: $\rho < \rho_0$
AssumptionsAssumptions of tests for correlation
  • Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
    • Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
    • Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
    • Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
  • In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
Test statisticTest statistic
$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
$p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size
Test statistic for testing H0: $\rho = 0$:
  • $t = \dfrac{r \times \sqrt{N - 2}}{\sqrt{1 - r^2}} $
    where $r$ is the sample correlation $r = \frac{1}{N - 1} \sum_{j}\Big(\frac{x_{j} - \bar{x}}{s_x} \Big) \Big(\frac{y_{j} - \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
  • $z = \dfrac{r_{Fisher} - \rho_{0_{Fisher}}}{\sqrt{\dfrac{1}{N - 3}}}$
    • $r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$, where $r$ is the sample correlation
    • $\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1 - \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
Sampling distribution of $z$ if H0 were trueSampling distribution of $t$ and of $z$ if H0 were true
Approximately standard normalSampling distribution of $t$:
  • $t$ distribution with $N - 2$ degrees of freedom
Sampling distribution of $z$:
  • Approximately standard normal
Significant?Significant?
Two sided: Right sided: Left sided: $t$ Test two sided: $t$ Test right sided: $t$ Test left sided: $z$ Test two sided: $z$ Test right sided: $z$ Test left sided:
Approximate $C\%$ confidence interval for $\pi$Approximate $C$% confidence interval for $\rho$
Regular (large sample):
  • $p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}}$
    where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
  • $p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}}$
    where $p_{plus} = \dfrac{X + 2}{N + 4}$ and $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
First compute approximate $C$% confidence interval for $\rho_{Fisher}$:
  • $lower_{Fisher} = r_{Fisher} - z^* \times \sqrt{\dfrac{1}{N - 3}}$
  • $upper_{Fisher} = r_{Fisher} + z^* \times \sqrt{\dfrac{1}{N - 3}}$
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$ and $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get approximate $C$% confidence interval for $\rho$:
  • lower bound = $\dfrac{e^{2 \times lower_{Fisher}} - 1}{e^{2 \times lower_{Fisher}} + 1}$
  • upper bound = $\dfrac{e^{2 \times upper_{Fisher}} - 1}{e^{2 \times upper_{Fisher}} + 1}$
n.a.Properties of the Pearson correlation coefficient
-
  • The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
  • The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
  • The Pearson correlation coefficient can take on values between -1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
  • The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable).
    For example:
    • the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y - 6$.
    • the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $-3x + 5$ and $2y - 6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $-3$.
  • The Pearson correlation coefficient does not say anything about causality.
  • The Pearson correlation coefficient is sensitive to outliers.
Equivalent toEquivalent to
  • When testing two sided: goodness of fit test, with categorical variable with 2 levels
  • When $N$ is large, the $p$ value from the $z$ test for a single proportion approaches the $p$ value from the binomial test for a single proportion. The $z$ test for a single proportion is just a large sample approximation of the binomial test for a single proportion.
OLS regression with one independent variable:
  • $b_1 = r \times \frac{s_y}{s_x}$
  • Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
Example contextExample context
Is the proportion smokers amongst office workers different from $\pi_0 = .2$? Use the normal approximation for the sampling distribution of the test statistic.Is there a linear relationship between physical health and mental health?
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
If computation time allows, SPSS will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
JamoviJamovi
Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
Jamovi will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Pearson (selected by default)
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questions