Two sample t test - equal variances assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances assumed
Goodness of fit test
Independent variableIndependent variable
One categorical with 2 independent groupsNone
Dependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesis
$\mu_1 = \mu_2$
$\mu_1$ is the unknown mean in population 1, $\mu_2$ is the unknown mean in population 2
  • The population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
  • The probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
Alternative hypothesisAlternative hypothesis
Two sided: $\mu_1 \neq \mu_2$
Right sided: $\mu_1 > \mu_2$
Left sided: $\mu_1 < \mu_2$
  • The population proportions are not all as specified under the null hypothesis
or equivalently
  • The probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
AssumptionsAssumptions
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statistic
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
$\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to H0.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells
Pooled standard deviationn.a.
$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$-
Sampling distribution of $t$ if H0 were trueSampling distribution of $X^2$ if H0 were true
$t$ distribution with $n_1 + n_2 - 2$ degrees of freedomApproximately a chi-squared distribution with $J - 1$ degrees of freedom
Significant?Significant?
Two sided: Right sided: Left sided:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu_1 - \mu_2$n.a.
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20)

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
-
Effect sizen.a.
Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Indicates how many standard deviations $s_p$ the two sample means are removed from each other
-
Visual representationn.a.
Two sample t test - equal variances assumed
-
Equivalent ton.a.
One way ANOVA with an independent variable with 2 levels ($I$ = 2):
  • two sided two sample $t$ test equivalent to ANOVA $F$ test when $I$ = 2
  • two sample $t$ test equivalent to $t$ test for contrast when $I$ = 2
  • two sample $t$ test equivalent to $t$ test multiple comparisons when $I$ = 2

OLS regression with one categorical independent variable with 2 levels:
  • two sided two sample $t$ test equivalent to $F$ test regression model
  • two sample $t$ test equivalent to $t$ test for regression coefficient $\beta_1$
-
Example contextExample context
Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low}$ = .2, $\pi_{moderate}$ = .6, and $\pi_{high}$ = .2?
SPSSSPSS
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
  • Put your categorical variable in the box below Test Variable List
  • Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
JamoviJamovi
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Student's (selected by default)
  • Under Hypothesis, select your alternative hypothesis
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
  • Put your categorical variable in the box below Variable
  • Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Practice questionsPractice questions