Regression (OLS) - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Regression (OLS)
Two way ANOVA
One way ANOVA
Logistic regression
Independent variablesIndependent/grouping variablesIndependent/grouping variableIndependent variables
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesTwo categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)One categorical with $I$ independent groups ($I \geqslant 2$)One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
Dependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio levelOne categorical with 2 independent groups
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
$F$ test for the complete regression model:
  • H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
    or equivalenty
  • H0: the variance explained by all the independent variables together (the complete model) is 0 in the population, i.e. $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
  • H0: $\beta_k = 0$
in the regression equation $ \mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\mu_y$ represents the population mean of the dependent variable $ y$ given the scores on the independent variables.
ANOVA $F$ tests:
  • H0 for main and interaction effects together (model): no main effects and interaction effect
  • H0 for independent variable A: no main effect for A
  • H0 for independent variable B: no main effect for B
  • H0 for the interaction term: no interaction effect between A and B
Like in one way ANOVA, we can also perform $t$ tests for specific contrasts and multiple comparisons. This is more advanced stuff.
ANOVA $F$ test:
  • H0: $\mu_1 = \mu_2 = \ldots = \mu_I$
    $\mu_1$ is the population mean for group 1; $\mu_2$ is the population mean for group 2; $\mu_I$ is the population mean for group $I$
$t$ Test for contrast:
  • H0: $\Psi = 0$
    $\Psi$ is the population contrast, defined as $\Psi = \sum a_i\mu_i$. Here $\mu_i$ is the population mean for group $i$ and $a_i$ is the coefficient for $\mu_i$. The coefficients $a_i$ sum to 0.
$t$ Test multiple comparisons:
  • H0: $\mu_g = \mu_h$
    $\mu_g$ is the population mean for group $g$; $\mu_h$ is the population mean for group $h$
Model chi-squared test for the complete regression model:
  • H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
  • H0: $\beta_k = 0$
    or in terms of odds ratio:
  • H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
  • H0: $\beta_k = 0$
    or in terms of odds ratio:
  • H0: $e^{\beta_k} = 1$
in the regression equation $ \ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K $. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $ y = 1$ (or equivalently, the proportion of $ y = 1$ in the population) given the scores on the independent variables.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
$F$ test for the complete regression model:
  • H1: not all population regression coefficients are 0
    or equivalenty
  • H1: the variance explained by all the independent variables together (the complete model) is larger than 0 in the population, i.e. $\rho^2 > 0$
$t$ test for individual regression coefficient $\beta_k$:
  • H1 two sided: $\beta_k \neq 0$
  • H1 right sided: $\beta_k > 0$
  • H1 left sided: $\beta_k < 0$
ANOVA $F$ tests:
  • H1 for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
  • H1 for independent variable A: there is a main effect for A
  • H1 for independent variable B: there is a main effect for B
  • H1 for the interaction term: there is an interaction effect between A and B
ANOVA $F$ test:
  • H1: not all population means are equal
$t$ Test for contrast:
  • H1 two sided: $\Psi \neq 0$
  • H1 right sided: $\Psi > 0$
  • H1 left sided: $\Psi < 0$
$t$ Test multiple comparisons:
  • H1 - usually two sided: $\mu_g \neq \mu_h$
Model chi-squared test for the complete regression model:
  • H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
  • H1: $\beta_k \neq 0$
    or in terms of odds ratio:
  • H1: $e^{\beta_k} \neq 1$
    If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
  • H1 right sided: $\beta_k > 0$
  • H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
  • H1: $\beta_k \neq 0$
    or in terms of odds ratio:
  • H1: $e^{\beta_k} \neq 1$
AssumptionsAssumptionsAssumptionsAssumptions
  • In the population, the residuals are normally distributed at each combination of values of the independent variables
  • In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
  • In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
  • Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
  • For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
  • Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the populations: $\sigma_1 = \sigma_2 = \ldots = \sigma_I$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
  • In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
Test statisticTest statisticTest statisticTest statistic
$F$ test for the complete regression model:
  • $ \begin{aligned}[t] F &= \dfrac{\sum (\hat{y}_j - \bar{y})^2 / K}{\sum (y_j - \hat{y}_j)^2 / (N - K - 1)}\\ &= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square model}}{\mbox{mean square error}} \end{aligned} $
    where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables.
$t$ test for individual $\beta_k$:
  • $t = \dfrac{b_k}{SE_{b_k}}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
      with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ is more complicated.
Note 1: mean square model is also known as mean square regression, and mean square error is also known as mean square residual.
Note 2: if there is only one independent variable in the model ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1.$
For main and interaction effects together (model):
  • $F = \dfrac{\mbox{mean square model}}{\mbox{mean square error}}$
For independent variable A:
  • $F = \dfrac{\mbox{mean square A}}{\mbox{mean square error}}$
For independent variable B:
  • $F = \dfrac{\mbox{mean square B}}{\mbox{mean square error}}$
For the interaction term:
  • $F = \dfrac{\mbox{mean square interaction}}{\mbox{mean square error}}$
Note: mean square error is also known as mean square residual or mean square within.
ANOVA $F$ test:
  • $\begin{aligned}[t] F &= \dfrac{\sum\nolimits_{subjects} (\mbox{subject's group mean} - \mbox{overall mean})^2 / (I - 1)}{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2 / (N - I)}\\ &= \dfrac{\mbox{sum of squares between} / \mbox{degrees of freedom between}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square between}}{\mbox{mean square error}} \end{aligned} $
    where $N$ is the total sample size, and $I$ is the number of groups.
    Note: mean square between is also known as mean square model, and mean square error is also known as mean square residual or mean square within.
$t$ Test for contrast:
  • $t = \dfrac{c}{s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}}$
    Here $c$ is the sample estimate of the population contrast $\Psi$: $c = \sum a_i\bar{y}_i$, with $\bar{y}_i$ the sample mean in group $i$. $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $a_i$ is the contrast coefficient for group $i$, and $n_i$ is the sample size of group $i$.
    Note that if the contrast compares only two group means with each other, this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). In that case the only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
$t$ Test multiple comparisons:
  • $t = \dfrac{\bar{y}_g - \bar{y}_h}{s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}}$
    $\bar{y}_g$ is the sample mean in group $g$, $\bar{y}_h$ is the sample mean in group $h$, $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $n_g$ is the sample size of group $g$, and $n_h$ is the sample size of group $h$.
    Note that this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). The only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
Model chi-squared test for the complete regression model:
  • $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
    $D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
  • Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
  • Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.

Likelihood ratio chi-squared test for individual $\beta_k$:
  • $X^2 = D_{K-1} - D_K$
    $D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
Sample standard deviation of the residuals $s$Pooled standard deviationPooled standard deviationn.a.
$\begin{aligned} s &= \sqrt{\dfrac{\sum (y_j - \hat{y}_j)^2}{N - K - 1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $ $ \begin{aligned} s_p &= \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2 + \ldots + (n_I - 1) \times s^2_I}{N - I}}\\ &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - I}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $

Here $s^2_i$ is the variance in group $i.$
-
Sampling distribution of $F$ and of $t$ if H0 were trueSampling distribution of $F$ if H0 were trueSampling distribution of $F$ and of $t$ if H0 were trueSampling distribution of $X^2$ and of the Wald statistic if H0 were true
Sampling distribution of $F$:
  • $F$ distribution with $K$ (df model, numerator) and $N - K - 1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - K - 1$ (df error) degrees of freedom
For main and interaction effects together (model):
  • $F$ distribution with $(I - 1) + (J - 1) + (I - 1) \times (J - 1)$ (df model, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
  • $F$ distribution with $I - 1$ (df A, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
  • $F$ distribution with $J - 1$ (df B, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
  • $F$ distribution with $(I - 1) \times (J - 1)$ (df interaction, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size.
Sampling distribution of $F$:
  • $F$ distribution with $I - 1$ (df between, numerator) and $N - I$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - I$ degrees of freedom
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
  • chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
  • If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: approximately the chi-squared distribution with 1 degree of freedom
  • If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: approximately the standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
  • chi-squared distribution with 1 degree of freedom
Significant?Significant?Significant?Significant?
$F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$ (e.g. .01 < $p$ < .025 when $F$ = 3.91, df between = 4, and df error = 20)

$t$ Test for contrast two sided: $t$ Test for contrast right sided: $t$ Test for contrast left sided:
$t$ Test multiple comparisons two sided:
  • Check if $t$ observed in sample is at least as extreme as critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons right sided
  • Check if $t$ observed in sample is equal to or larger than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons left sided
  • Check if $t$ observed in sample is equal to or smaller than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
  • If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
  • If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$, $C\%$ prediction interval for $y_{new}$n.a.$C\%$ confidence interval for $\Psi$, for $\mu_g - \mu_h$, and for $\mu_i$Wald-type approximate $C\%$ confidence interval for $\beta_k$
Confidence interval for $\beta_k$:
  • $b_k \pm t^* \times SE_{b_k}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
  • $\hat{y} \pm t^* \times SE_{\hat{y}}$
    • If only one independent variable:
      $SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
  • $\hat{y} \pm t^* \times SE_{y_{new}}$
    • If only one independent variable:
      $SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N - K - 1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
-Confidence interval for $\Psi$ (contrast):
  • $c \pm t^* \times s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}$
    where the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for $\mu_g - \mu_h$ (multiple comparisons):
  • $(\bar{y}_g - \bar{y}_h) \pm t^{**} \times s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}$
    where $t^{**}$ depends upon $C$, degrees of freedom ($N - I$), and the multiple comparison procedure. If you do not want to apply a multiple comparison procedure, $t^{**} = t^* = $ the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$. Note that $n_g$ is the sample size of group $g$, $n_h$ is the sample size of group $h$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for single population mean $\mu_i$:
  • $\bar{y}_i \pm t^* \times \dfrac{s_p}{\sqrt{n_i}}$
    where $\bar{y}_i$ is the sample mean in group $i$, $n_i$ is the sample size of group $i$, and the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
$b_k \pm z^* \times SE_{b_k}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Effect sizeEffect sizeEffect sizeGoodness of fit measure $R^2_L$
Complete model:
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
    $$ \begin{align} R^2 &= \dfrac{\sum (\hat{y}_j - \bar{y})^2}{\sum (y_j - \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\ &= 1 - \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\ &= r(y, \hat{y})^2 \end{align} $$
    $R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
  • Wherry's $R^2$ / shrunken $R^2$:
    Corrects for the positive bias in $R^2$ and is equal to $$R^2_W = 1 - \frac{N - 1}{N - K - 1}(1 - R^2)$$
    $R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2.$
  • Stein's $R^2$:
    Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to $$R^2_S = 1 - \frac{(N - 1)(N - 2)(N + 1)}{(N - K - 1)(N - K - 2)(N)}(1 - R^2)$$
Per independent variable:
  • Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
  • Semi-partial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
  • Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
    $$ \begin{align} R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}} \end{align} $$ $R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\eta^2$:
    Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
    $$ \begin{align} \eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\ \\ \eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\ \\ \eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}} \end{align} $$ $\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to:
    $$ \begin{align} \omega^2_A &= \dfrac{\mbox{sum of squares A} - \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_B &= \dfrac{\mbox{sum of squares B} - \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_{int} &= \dfrac{\mbox{sum of squares int} - \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \end{align} $$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2$. Only for balanced designs (equal sample sizes).

  • Proportion variance explained $\eta^2_{partial}$: $$ \begin{align} \eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}} \end{align} $$
  • Proportion variance explained $\eta^2$ and $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variable: $$ \begin{align} \eta^2 = R^2 &= \dfrac{\mbox{sum of squares between}}{\mbox{sum of squares total}} \end{align} $$ Only in one way ANOVA $\eta^2 = R^2.$ $\eta^2$ (and $R^2$) is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to: $$\omega^2 = \frac{\mbox{sum of squares between} - \mbox{df between} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}$$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2.$

  • Cohen's $d$:
    Standardized difference between the mean in group $g$ and in group $h$: $$d_{g,h} = \frac{\bar{y}_g - \bar{y}_h}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ two sample means are removed from each other.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
Visual representationn.a.n.a.n.a.
Regression equations with: ---
ANOVA tableANOVA tableANOVA tablen.a.
ANOVA table regression analysis
two way ANOVA table
ANOVA table

Click the link for a step by step explanation of how to compute the sum of squares.
-
n.a.Equivalent toEquivalent ton.a.
-OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables.OLS regression with one categorical independent variable transformed into $I - 1$ code variables:
  • $F$ test ANOVA is equivalent to $F$ test regression model
  • $t$ test for contrast $i$ is equivalent to $t$ test for regression coefficient $\beta_i$ (specific contrast tested depends on how the code variables are defined)
-
Example contextExample contextExample contextExample context
Can mental health be predicted from fysical health, economic class, and gender?Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?Is the average mental health score different between people from a low, moderate, and high economic class?Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?
SPSSSPSSSPSSSPSS
Analyze > Regression > Linear...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
Analyze > Compare Means > One-Way ANOVA...
  • Put your dependent (quantitative) variable in the box below Dependent List and your independent (grouping) variable in the box below Factor
or
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factor(s)
Analyze > Regression > Binary Logistic...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
JamoviJamoviJamoviJamovi
Regression > Linear Regression
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factors
Regression > 2 Outcomes - Binomial
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Practice questionsPractice questionsPractice questionsPractice questions