This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
For main and interaction effects together (model): no main effects and interaction effect
For independent variable A: no main effect for A
For independent variable B: no main effect for B
For the interaction term: no interaction effect between A and B
We could also perform $t$ tests for specific contrasts and multiple comparisons, just like we did with one way ANOVA. However, this is more advanced stuff.
$\rho = \rho_0$
$\rho$ is the unknown Pearson correlation in the population, $\rho_0$ is the correlation in the population according to the null hypothesis (usually 0)
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
$F$ test for the complete regression model:
not all population regression coefficients are 0 or equivalenty
The variance explained by all the independent variables together (the complete model) is larger than 0 in the population: $\rho^2 > 0$
$t$ test for individual $\beta_k$:
Two sided: $\beta_k \neq 0$
Right sided: $\beta_k > 0$
Left sided: $\beta_k < 0$
ANOVA $F$ tests:
For main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
For independent variable A: there is a main effect for A
For independent variable B: there is a main effect for B
For the interaction term: there is an interaction effect between A and B
Two sided: $\rho \neq \rho_0$
Right sided: $\rho > \rho_0$
Left sided: $\rho < \rho_0$
Assumptions
Assumptions
Assumptions of tests for correlation
In the population, the residuals are normally distributed at each combination of values of the independent variables
In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
Test statistic
Test statistic
Test statistic
$F$ test for the complete regression model:
$
\begin{aligned}[t]
F &= \dfrac{\sum (\hat{y}_j  \bar{y})^2 / K}{\sum (y_j  \hat{y}_j)^2 / (N  K  1)}\\
&= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\
&= \dfrac{\mbox{mean square model}}{\mbox{mean square error}}
\end{aligned}
$
where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables
$t$ test for individual $\beta_k$:
$t = \dfrac{b_k}{SE_{b_k}}$
If only one independent variable: $SE_{b_1} = \dfrac{\sqrt{\sum (y_j  \hat{y}_j)^2 / (N  2)}}{\sqrt{\sum (x_j  \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j  \bar{x})^2}}$, with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ becomes complicated
Note 1: mean square model is also known as mean square regression; mean square error is also known as mean square residual
Note 2: if only one independent variable ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1$
For main and interaction effects together (model):
$r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1  r} \Bigg )$, where $r$ is the sample correlation
$\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1  \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
Sample standard deviation of the residuals $s$
Pooled standard deviation
n.a.
$\begin{aligned}
s &= \sqrt{\dfrac{\sum (y_j  \hat{y}_j)^2}{N  K  1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}}
\end{aligned}
$
$
\begin{aligned}
s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score}  \mbox{its group mean})^2}{N  (I \times J)}}\\
&= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\
&= \sqrt{\mbox{mean square error}}
\end{aligned}
$
$F$ distribution with $K$ (df model, numerator) and $N  K  1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
$t$ distribution with $N  K  1$ (df error) degrees of freedom
For main and interaction effects together (model):
$F$ distribution with $(I  1) + (J  1) + (I  1) \times (J  1)$ (df model, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
$F$ distribution with $I  1$ (df A, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
$F$ distribution with $J  1$ (df B, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
$F$ distribution with $(I  1) \times (J  1)$ (df interaction, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size
Sampling distribution of $t$:
$t$ distribution with $N  2$ degrees of freedom
Sampling distribution of $z$:
Approximately standard normal
Significant?
Significant?
Significant?
$F$ test:
Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$t$ Test left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
$z$ Test two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
$z$ Test right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
$z$ Test left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$; $C\%$ prediction interval for $y_{new}$
n.a.
Approximate $C$% confidence interval for $\rho$
Confidence interval for $\beta_k$:
$b_k \pm t^* \times SE_{b_k}$
If only one independent variable: $SE_{b_1} = \dfrac{\sqrt{\sum (y_j  \hat{y}_j)^2 / (N  2)}}{\sqrt{\sum (x_j  \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j  \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
$\hat{y} \pm t^* \times SE_{\hat{y}}$
If only one independent variable:
$SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^*  \bar{x})^2}{\sum (x_j  \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
$\hat{y} \pm t^* \times SE_{y_{new}}$
If only one independent variable:
$SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^*  \bar{x})^2}{\sum (x_j  \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N  K  1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

First compute approximate $C$% confidence interval for $\rho_{Fisher}$:
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1  r} \Bigg )$ and $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get approximate $C$% confidence interval for $\rho$:
Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
$$
\begin{align}
R^2 &= \dfrac{\sum (\hat{y}_j  \bar{y})^2}{\sum (y_j  \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\
&= 1  \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\
&= r(y, \hat{y})^2
\end{align}
$$
$R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
Wherry's $R^2$ / shrunken $R^2$:
Corrects for the positive bias in $R^2$ and is equal to
$$R^2_W = 1  \frac{N  1}{N  K  1}(1  R^2)$$
$R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2$
Stein's $R^2$:
Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to
$$R^2_S = 1  \frac{(N  1)(N  2)(N + 1)}{(N  K  1)(N  K  2)(N)}(1  R^2)$$
Per independent variable:
Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
Semipartial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
$$
\begin{align}
R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}
\end{align}
$$
$R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\eta^2$:
Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
$$
\begin{align}
\eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\
\\
\eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\
\\
\eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}}
\end{align}
$$
$\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\omega^2$:
Corrects for the positive bias in $\eta^2$ and is equal to:
$$
\begin{align}
\omega^2_A &= \dfrac{\mbox{sum of squares A}  \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_B &= \dfrac{\mbox{sum of squares B}  \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_{int} &= \dfrac{\mbox{sum of squares int}  \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\end{align}
$$
$\omega^2$ is a better estimate of the explained variance in the population than
$\eta^2$. Only for balanced designs (equal sample sizes).
Proportion variance explained $\eta^2_{partial}$:
$$
\begin{align}
\eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}}
\end{align}
$$
The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
The Pearson correlation coefficient can take on values between 1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable). For example:
the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y  6$.
the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $3x + 5$ and $2y  6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $3$.
The Pearson correlation coefficient does not say anything about causality.
The Pearson correlation coefficient is sensitive to outliers.
ANOVA table
ANOVA table
n.a.

n.a.
Equivalent to
Equivalent to

OLS regression with two, categorical independent variables and the interaction term, transformed into $(I  1)$ + $(J  1)$ + $(I  1) \times (J  1)$ code variables.
Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
Example context
Example context
Example context
Can mental health be predicted from fysical health, economic class, and gender?
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?
Is there a linear relationship between physical health and mental health?
SPSS
SPSS
SPSS
Analyze > Regression > Linear...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
Analyze > General Linear Model > Univariate...
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
Analyze > Correlate > Bivariate...
Put your two variables in the box below Variables
Jamovi
Jamovi
Jamovi
Regression > Linear Regression
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
ANOVA > ANOVA
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
Regression > Correlation Matrix
Put your two variables in the white box at the right
Under Correlation Coefficients, select Pearson (selected by default)
Under Hypothesis, select your alternative hypothesis