Regression (OLS) - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Regression (OLS)
$z$ test for the difference between two proportions
Paired sample $t$ test
Sign test
Chi-squared test for the relationship between two categorical variables
Independent variablesIndependent variableIndependent variableIndependent variableIndependent /column variable
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesOne categorical with 2 independent groups2 paired groups2 paired groupsOne categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variableDependent variableDependent variableDependent variableDependent /row variable
One quantitative of interval or ratio levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne of ordinal levelOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
$F$ test for the complete regression model:
  • $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
    or equivalenty
  • The variance explained by all the independent variables together (the complete model) is 0 in the population: $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
  • $\beta_k = 0$
in the regression equation $ \mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K $
$\pi_1 = \pi_2$
$\pi_1$ is the unknown proportion of "successes" in population 1; $\pi_2$ is the unknown proportion of "successes" in population 2
$\mu = \mu_0$
$\mu$ is the unknown population mean of the difference scores; $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0
  • P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • The median of the difference scores is zero in the population
  • There is no association between the row and column variable
    More precise statement:
    • If there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
      The distribution of the dependent variable is the same in each of the $I$ populations
    • If there is one random sample of size $N$ from the total population:
      The row and column variables are independent
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
$F$ test for the complete regression model:
  • not all population regression coefficients are 0
    or equivalenty
  • The variance explained by all the independent variables together (the complete model) is larger than 0 in the population: $\rho^2 > 0$
$t$ test for individual $\beta_k$:
  • Two sided: $\beta_k \neq 0$
  • Right sided: $\beta_k > 0$
  • Left sided: $\beta_k < 0$
Two sided: $\pi_1 \neq \pi_2$
Right sided: $\pi_1 > \pi_2$
Left sided: $\pi_1 < \pi_2$
Two sided: $\mu \neq \mu_0$
Right sided: $\mu > \mu_0$
Left sided: $\mu < \mu_0$
  • Two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • Right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • Left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • Two sided: the median of the difference scores is different from zero in the population
  • Right sided: the median of the difference scores is larger than zero in the population
  • Left sided: the median of the difference scores is smaller than zero in the population
  • There is an association between the row and column variable
    More precise statement:
    • If there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
      The distribution of the dependent variable is not the same in all of the $I$ populations
    • If there is one random sample of size $N$ from the total population:
      The row and column variables are dependent
AssumptionsAssumptionsAssumptionsAssumptionsAssumptions
  • In the population, the residuals are normally distributed at each combination of values of the independent variables
  • In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
  • In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
  • Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
    • Significance test: number of successes and number of failures are each 5 or more in both sample groups
    • Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
    • Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Difference scores are normally distributed in the population
  • Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
Population of difference scores can be conceived of as the difference scores we would find if we would apply our study (e.g., applying an intervention and measuring pre-post scores) to all individuals in the population.
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
    • 2 $\times$ 2 table: all four expected cell counts are 5 or more
    • Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
  • There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
Test statisticTest statisticTest statisticTest statisticTest statistic
$F$ test for the complete regression model:
  • $ \begin{aligned}[t] F &= \dfrac{\sum (\hat{y}_j - \bar{y})^2 / K}{\sum (y_j - \hat{y}_j)^2 / (N - K - 1)}\\ &= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square model}}{\mbox{mean square error}} \end{aligned} $
    where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables
$t$ test for individual $\beta_k$:
  • $t = \dfrac{b_k}{SE_{b_k}}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$, with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ becomes complicated
Note 1: mean square model is also known as mean square regression; mean square error is also known as mean square residual
Note 2: if only one independent variable ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1$
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
$p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1$
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to H0, $s$ is the sample standard deviation of the difference scores, $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$
$W = $ number of difference scores that is larger than 0$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells
Sample standard deviation of the residuals $s$n.a.n.a.n.a.n.a.
$\begin{aligned} s &= \sqrt{\dfrac{\sum (y_j - \hat{y}_j)^2}{N - K - 1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $----
Sampling distribution of $F$ and of $t$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $W$ if H0 were trueSampling distribution of $X^2$ if H0 were true
Sampling distribution of $F$:
  • $F$ distribution with $K$ (df model, numerator) and $N - K - 1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - K - 1$ (df error) degrees of freedom
Approximately standard normal$t$ distribution with $N - 1$ degrees of freedomThe exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1-p)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately a standard normal distribution if the null hypothesis were true.
Approximately a chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom
Significant?Significant?Significant?Significant?Significant?
$F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided:
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided: If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$; $C\%$ prediction interval for $y_{new}$Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$$C\%$ confidence interval for $\mu$n.a.n.a.
Confidence interval for $\beta_k$:
  • $b_k \pm t^* \times SE_{b_k}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
  • $\hat{y} \pm t^* \times SE_{\hat{y}}$
    • If only one independent variable:
      $SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
  • $\hat{y} \pm t^* \times SE_{y_{new}}$
    • If only one independent variable:
      $SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N - K - 1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
Regular (large sample):
  • $(p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}}$
    where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
  • $(p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}}$
    where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20)

The confidence interval for $\mu$ can also be used as significance test.
--
Effect sizen.a.Effect sizen.a.n.a.
Complete model:
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
    $$ \begin{align} R^2 &= \dfrac{\sum (\hat{y}_j - \bar{y})^2}{\sum (y_j - \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\ &= 1 - \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\ &= r(y, \hat{y})^2 \end{align} $$
    $R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
  • Wherry's $R^2$ / shrunken $R^2$:
    Corrects for the positive bias in $R^2$ and is equal to $$R^2_W = 1 - \frac{N - 1}{N - K - 1}(1 - R^2)$$
    $R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2$
  • Stein's $R^2$:
    Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to $$R^2_S = 1 - \frac{(N - 1)(N - 2)(N + 1)}{(N - K - 1)(N - K - 2)(N)}(1 - R^2)$$
Per independent variable:
  • Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
  • Semi-partial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
  • Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
-Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0$
--
n.a.n.a.Visual representationn.a.n.a.
--
Paired sample t test
--
ANOVA tablen.a.n.a.n.a.n.a.
ANOVA table regression analysis
----
n.a.Equivalent toEquivalent toEquivalent ton.a.
-When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levelsOne sample $t$ test on the difference scores
Repeated measures ANOVA with one dichotomous within subjects factor
Two sided sign test is equivalent to -
Example contextExample contextExample contextExample contextExample context
Can mental health be predicted from fysical health, economic class, and gender?Is the proportion smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Is the average difference between the mental health scores before and after an intervention different from $\mu_0$ = 0?Do people tend to score higher on mental health after a mindfulness course?Is there an association between economic class and gender? Is the distribution of economic class different between men and women?
SPSSSPSSSPSSSPSSSPSS
Analyze > Regression > Linear...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Analyze > Descriptive Statistics > Crosstabs...
  • Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
Analyze > Compare Means > Paired-Samples T Test...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
Analyze > Descriptive Statistics > Crosstabs...
  • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
JamoviJamoviJamoviJamoviJamovi
Regression > Linear Regression
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Frequencies > Independent Samples - $\chi^2$ test of association
  • Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
T-Tests > Paired Samples T-Test
  • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
  • Under Hypothesis, select your alternative hypothesis
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Frequencies > Independent Samples - $\chi^2$ test of association
  • Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
Practice questionsPractice questionsPractice questionsPractice questionsPractice questions