# Regression (OLS) - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Regression (OLS)
Binomial test for a single proportion
Paired sample $t$ test
$z$ test for a single proportion
One sample $t$ test for the mean
$z$ test for a single proportion
Marginal Homogeneity test / Stuart-Maxwell test
Independent variablesIndependent variableIndependent variableIndependent variableIndependent variableIndependent variableIndependent variable
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesNone2 paired groupsNoneNoneNone2 paired groups
Dependent variableDependent variableDependent variableDependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne categorical with 2 independent groupsOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
$F$ test for the complete regression model:
• H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
or equivalenty
• H0: the variance explained by all the independent variables together (the complete model) is 0 in the population, i.e. $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
• H0: $\beta_k = 0$
in the regression equation $\mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $x_i$ represents independent variable $i$, $\beta_i$ is the regression weight for independent variable $x_i$, and $\mu_y$ represents the population mean of the dependent variable $y$ given the scores on the independent variables.
H0: $\pi = \pi_0$

$\pi$ is the population proportion of 'successes'; $\pi_0$ is the population proportion of successes according to the null hypothesis
H0: $\mu = \mu_0$

$\mu$ is the population mean of the difference scores; $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\pi = \pi_0$

$\pi$ is the population proportion of 'successes'; $\pi_0$ is the population proportion of successes according to the null hypothesis
H0: $\mu = \mu_0$

$\mu$ is the population mean; $\mu_0$ is the population mean according to the null hypothesis
H0: $\pi = \pi_0$

$\pi$ is the population proportion of 'successes'; $\pi_0$ is the population proportion of successes according to the null hypothesis
H0: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group

Here $\pi_j$ is the population proportion in category $j$
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
$F$ test for the complete regression model:
• H1: not all population regression coefficients are 0
or equivalenty
• H1: the variance explained by all the independent variables together (the complete model) is larger than 0 in the population, i.e. $\rho^2 > 0$
$t$ test for individual regression coefficient $\beta_k$:
• H1 two sided: $\beta_k \neq 0$
• H1 right sided: $\beta_k > 0$
• H1 left sided: $\beta_k < 0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group
AssumptionsAssumptionsAssumptionsAssumptionsAssumptionsAssumptionsAssumptions
• In the population, the residuals are normally distributed at each combination of values of the independent variables
• In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
• In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
• The residuals are independent of one another
• Variables are measured without error
Also pay attention to:
• Multicollinearity
• Outliers
• Sample is a simple random sample from the population. That is, observations are independent of one another
• Difference scores are normally distributed in the population
• Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
• Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
• Scores are normally distributed in the population
• Sample is a simple random sample from the population. That is, observations are independent of one another
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
• Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
• Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Test statisticTest statisticTest statisticTest statisticTest statisticTest statisticTest statistic
$F$ test for the complete regression model:
• \begin{aligned}[t] F &= \dfrac{\sum (\hat{y}_j - \bar{y})^2 / K}{\sum (y_j - \hat{y}_j)^2 / (N - K - 1)}\\ &= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square model}}{\mbox{mean square error}} \end{aligned}
where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables
$t$ test for individual $\beta_k$:
• $t = \dfrac{b_k}{SE_{b_k}}$
• If only one independent variable:
$SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$, with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ becomes complicated
Note 1: mean square model is also known as mean square regression; mean square error is also known as mean square residual
Note 2: if only one independent variable ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1$
$X$ = number of successes in the sample$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
$p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
$p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.
Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand.
Sample standard deviation of the residuals $s$n.a.n.a.n.a.n.a.n.a.n.a.
\begin{aligned} s &= \sqrt{\dfrac{\sum (y_j - \hat{y}_j)^2}{N - K - 1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned}------
Sampling distribution of $F$ and of $t$ if H0 were trueSampling distribution of $X$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of the test statistic if H0 were true
Sampling distribution of $F$:
• $F$ distribution with $K$ (df model, numerator) and $N - K - 1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
• $t$ distribution with $N - K - 1$ (df error) degrees of freedom
Binomial($n$, $p$) distribution

Here $n = N$ (total sample size), and $p = \pi_0$ (population proportion according to the null hypothesis)
$t$ distribution with $N - 1$ degrees of freedomApproximately the standard normal distribution$t$ distribution with $N - 1$ degrees of freedomApproximately the standard normal distributionApproximately the chi-squared distribution with $J - 1$ degrees of freedom
Significant?Significant?Significant?Significant?Significant?Significant?Significant?
$F$ test:
• Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
• Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided:
$t$ Test right sided:
$t$ Test left sided:
Two sided:
• Check if $X$ observed in sample is in the rejection region or
• Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
• Check if $X$ observed in sample is in the rejection region or
• Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
• Check if $X$ observed in sample is in the rejection region or
• Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
If we denote the test statistic as $X^2$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$; $C\%$ prediction interval for $y_{new}$n.a.$C\%$ confidence interval for $\mu$Approximate $C\%$ confidence interval for \pi$$C\% confidence interval for \muApproximate C\% confidence interval for \pin.a. Confidence interval for \beta_k: • b_k \pm t^* \times SE_{b_k} • If only one independent variable: SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}} Confidence interval for \mu_y, the population mean of y given the values on the independent variables: • \hat{y} \pm t^* \times SE_{\hat{y}} • If only one independent variable: SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}} Prediction interval for y_{new}, the score on y of a future respondent: • \hat{y} \pm t^* \times SE_{y_{new}} • If only one independent variable: SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}} In all formulas, the critical value t^* is the value under the t_{N - K - 1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). -\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}} where the critical value t^* is the value under the t_{N-1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20) The confidence interval for \mu can also be used as significance test. Regular (large sample): • p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}} where the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval) With plus four method: • p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}} where p_{plus} = \dfrac{X + 2}{N + 4} and the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval) \bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}} where the critical value t^* is the value under the t_{N-1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20) The confidence interval for \mu can also be used as significance test. Regular (large sample): • p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}} where the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval) With plus four method: • p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}} where p_{plus} = \dfrac{X + 2}{N + 4} and the critical value z^* is the value under the normal curve with the area C / 100 between -z^* and z^* (e.g. z^* = 1.96 for a 95% confidence interval) - Effect sizen.a.Effect sizen.a.Effect sizen.a.n.a. Complete model: • Proportion variance explained R^2: Proportion variance of the dependent variable y explained by the sample regression equation (the independent variables):$$ \begin{align} R^2 &= \dfrac{\sum (\hat{y}_j - \bar{y})^2}{\sum (y_j - \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\ &= 1 - \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\ &= r(y, \hat{y})^2 \end{align} $$R^2 is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, \rho^2. If there is only one independent variable, R^2 = r^2: the correlation between the independent variable x and dependent variable y squared. • Wherry's R^2 / shrunken R^2: Corrects for the positive bias in R^2 and is equal to$$R^2_W = 1 - \frac{N - 1}{N - K - 1}(1 - R^2)$$R^2_W is a less biased estimate than R^2 of the proportion variance explained in the population by the population regression equation, \rho^2 • Stein's R^2: Estimates the proportion of variance in y that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to$$R^2_S = 1 - \frac{(N - 1)(N - 2)(N + 1)}{(N - K - 1)(N - K - 2)(N)}(1 - R^2)$$Per independent variable: • Correlation squared r^2_k: the proportion of the total variance in the dependent variable y that is explained by the independent variable x_k, not corrected for the other independent variables in the model • Semi-partial correlation squared sr^2_k: the proportion of the total variance in the dependent variable y that is uniquely explained by the independent variable x_k, beyond the part that is already explained by the other independent variables in the model • Partial correlation squared pr^2_k: the proportion of the variance in the dependent variable y not explained by the other independent variables, that is uniquely explained by the independent variable x_k -Cohen's d: Standardized difference between the sample mean of the difference scores and \mu_0:$$d = \frac{\bar{y} - \mu_0}{s}$$Indicates how many standard deviations s the sample mean of the difference scores \bar{y} is removed from \mu_0 -Cohen's d: Standardized difference between the sample mean and \mu_0:$$d = \frac{\bar{y} - \mu_0}{s}$Indicates how many standard deviations$s$the sample mean$\bar{y}$is removed from$\mu_0$-- Visual representationn.a.Visual representationn.a.Visual representationn.a.n.a. Regression equations with: ---- ANOVA tablen.a.n.a.n.a.n.a.n.a.n.a. ------ n.a.n.a.Equivalent toEquivalent ton.a.Equivalent ton.a. -- • One sample$t$test on the difference scores • Repeated measures ANOVA with one dichotomous within subjects factor • When testing two sided: goodness of fit test, with categorical variable with 2 levels • When$N$is large, the$p$value from the$z$test for a single proportion approaches the$p$value from the binomial test for a single proportion. The$z$test for a single proportion is just a large sample approximation of the binomial test for a single proportion. - • When testing two sided: goodness of fit test, with categorical variable with 2 levels • When$N$is large, the$p$value from the$z$test for a single proportion approaches the$p$value from the binomial test for a single proportion. The$z$test for a single proportion is just a large sample approximation of the binomial test for a single proportion. - Example contextExample contextExample contextExample contextExample contextExample contextExample context Can mental health be predicted from fysical health, economic class, and gender?Is the proportion of smokers amongst office workers different from$\pi_0 = .2$?Is the average difference between the mental health scores before and after an intervention different from$\mu_0$= 0?Is the proportion of smokers amongst office workers different from$\pi_0 = .2$? Use the normal approximation for the sampling distribution of the test statistic.Is the average mental health score of office workers different from$\mu_0$= 50?Is the proportion of smokers amongst office workers different from$\pi_0 = .2$? Use the normal approximation for the sampling distribution of the test statistic.Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best? SPSSSPSSSPSSSPSSSPSSSPSSSPSS Analyze > Regression > Linear... • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s) Analyze > Nonparametric Tests > Legacy Dialogs > Binomial... • Put your dichotomous variable in the box below Test Variable List • Fill in the value for$\pi_0$in the box next to Test Proportion Analyze > Compare Means > Paired-Samples T Test... • Put the two paired variables in the boxes below Variable 1 and Variable 2 Analyze > Nonparametric Tests > Legacy Dialogs > Binomial... • Put your dichotomous variable in the box below Test Variable List • Fill in the value for$\pi_0$in the box next to Test Proportion If computation time allows, SPSS will give you the exact$p$value based on the binomial distribution, rather than the approximate$p$value based on the normal distribution Analyze > Compare Means > One-Sample T Test... • Put your variable in the box below Test Variable(s) • Fill in the value for$\mu_0$in the box next to Test Value Analyze > Nonparametric Tests > Legacy Dialogs > Binomial... • Put your dichotomous variable in the box below Test Variable List • Fill in the value for$\pi_0$in the box next to Test Proportion If computation time allows, SPSS will give you the exact$p$value based on the binomial distribution, rather than the approximate$p$value based on the normal distribution Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples... • Put the two paired variables in the boxes below Variable 1 and Variable 2 • Under Test Type, select the Marginal Homogeneity test JamoviJamoviJamoviJamoviJamoviJamovin.a. Regression > Linear Regression • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes' Frequencies > 2 Outcomes - Binomial test • Put your dichotomous variable in the white box at the right • Fill in the value for$\pi_0$in the box next to Test value • Under Hypothesis, select your alternative hypothesis T-Tests > Paired Samples T-Test • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line • Under Hypothesis, select your alternative hypothesis Frequencies > 2 Outcomes - Binomial test • Put your dichotomous variable in the white box at the right • Fill in the value for$\pi_0$in the box next to Test value • Under Hypothesis, select your alternative hypothesis Jamovi will give you the exact$p$value based on the binomial distribution, rather than the approximate$p$value based on the normal distribution T-Tests > One Sample T-Test • Put your variable in the box below Dependent Variables • Under Hypothesis, fill in the value for$\mu_0$in the box next to Test Value, and select your alternative hypothesis Frequencies > 2 Outcomes - Binomial test • Put your dichotomous variable in the white box at the right • Fill in the value for$\pi_0$in the box next to Test value • Under Hypothesis, select your alternative hypothesis Jamovi will give you the exact$p$value based on the binomial distribution, rather than the approximate$p\$ value based on the normal distribution
-
Practice questionsPractice questionsPractice questionsPractice questionsPractice questionsPractice questionsPractice questions