Regression (OLS) - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Regression (OLS)
Binomial test for a single proportion
Paired sample $t$ test
Two sample $t$ test - equal variances assumed
Two sample $z$ test
Independent variablesIndependent variableIndependent variableIndependent/grouping variableIndependent/grouping variable
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesNone2 paired groupsOne categorical with 2 independent groupsOne categorical with 2 independent groups
Dependent variableDependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
$F$ test for the complete regression model:
  • H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
    or equivalenty
  • H0: the variance explained by all the independent variables together (the complete model) is 0 in the population, i.e. $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
  • H0: $\beta_k = 0$
in the regression equation $ \mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\mu_y$ represents the population mean of the dependent variable $ y$ given the scores on the independent variables.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
$F$ test for the complete regression model:
  • H1: not all population regression coefficients are 0
    or equivalenty
  • H1: the variance explained by all the independent variables together (the complete model) is larger than 0 in the population, i.e. $\rho^2 > 0$
$t$ test for individual regression coefficient $\beta_k$:
  • H1 two sided: $\beta_k \neq 0$
  • H1 right sided: $\beta_k > 0$
  • H1 left sided: $\beta_k < 0$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
AssumptionsAssumptionsAssumptionsAssumptionsAssumptions
  • In the population, the residuals are normally distributed at each combination of values of the independent variables
  • In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
  • In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Difference scores are normally distributed in the population
  • Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • Population standard deviations $\sigma_1$ and $\sigma_2$ are known
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statisticTest statisticTest statistic
$F$ test for the complete regression model:
  • $ \begin{aligned}[t] F &= \dfrac{\sum (\hat{y}_j - \bar{y})^2 / K}{\sum (y_j - \hat{y}_j)^2 / (N - K - 1)}\\ &= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square model}}{\mbox{mean square error}} \end{aligned} $
    where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables.
$t$ test for individual $\beta_k$:
  • $t = \dfrac{b_k}{SE_{b_k}}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
      with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ is more complicated.
Note 1: mean square model is also known as mean square regression, and mean square error is also known as mean square residual.
Note 2: if there is only one independent variable in the model ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1.$
$X$ = number of successes in the sample$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$z = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
Sample standard deviation of the residuals $s$n.a.n.a.Pooled standard deviationn.a.
$\begin{aligned} s &= \sqrt{\dfrac{\sum (y_j - \hat{y}_j)^2}{N - K - 1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $--$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$-
Sampling distribution of $F$ and of $t$ if H0 were trueSampling distribution of $X$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $z$ if H0 were true
Sampling distribution of $F$:
  • $F$ distribution with $K$ (df model, numerator) and $N - K - 1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - K - 1$ (df error) degrees of freedom
Binomial($n$, $P$) distribution.

Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).
$t$ distribution with $N - 1$ degrees of freedom$t$ distribution with $n_1 + n_2 - 2$ degrees of freedomStandard normal distribution
Significant?Significant?Significant?Significant?Significant?
$F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided:
Two sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $X$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided: Two sided: Right sided: Left sided:
$C\%$ confidence interval for $\beta_k$ and for $\mu_y$, $C\%$ prediction interval for $y_{new}$n.a.$C\%$ confidence interval for $\mu$$C\%$ confidence interval for $\mu_1 - \mu_2$$C\%$ confidence interval for $\mu_1 - \mu_2$
Confidence interval for $\beta_k$:
  • $b_k \pm t^* \times SE_{b_k}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
  • $\hat{y} \pm t^* \times SE_{\hat{y}}$
    • If only one independent variable:
      $SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
  • $\hat{y} \pm t^* \times SE_{y_{new}}$
    • If only one independent variable:
      $SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N - K - 1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
-$\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu$ can also be used as significance test.
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
$(\bar{y}_1 - \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
Effect sizen.a.Effect sizeEffect sizen.a.
Complete model:
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
    $$ \begin{align} R^2 &= \dfrac{\sum (\hat{y}_j - \bar{y})^2}{\sum (y_j - \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\ &= 1 - \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\ &= r(y, \hat{y})^2 \end{align} $$
    $R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
  • Wherry's $R^2$ / shrunken $R^2$:
    Corrects for the positive bias in $R^2$ and is equal to $$R^2_W = 1 - \frac{N - 1}{N - K - 1}(1 - R^2)$$
    $R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2.$
  • Stein's $R^2$:
    Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to $$R^2_S = 1 - \frac{(N - 1)(N - 2)(N + 1)}{(N - K - 1)(N - K - 2)(N)}(1 - R^2)$$
Per independent variable:
  • Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
  • Semi-partial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
  • Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
-Cohen's $d$:
Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$
Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.
-
Visual representationn.a.Visual representationVisual representationVisual representation
Regression equations with: -
Paired sample t test
Two sample t test - equal variances assumed
Two sample z test
ANOVA tablen.a.n.a.n.a.n.a.
ANOVA table regression analysis
----
n.a.n.a.Equivalent toEquivalent ton.a.
--
  • One sample $t$ test on the difference scores.
  • Repeated measures ANOVA with one dichotomous within subjects factor.
One way ANOVA with an independent variable with 2 levels ($I$ = 2):
  • two sided two sample $t$ test is equivalent to ANOVA $F$ test when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test for contrast when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test multiple comparisons when $I$ = 2
OLS regression with one categorical independent variable with 2 levels:
  • two sided two sample $t$ test is equivalent to $F$ test regression model
  • two sample $t$ test is equivalent to $t$ test for regression coefficient $\beta_1$
-
Example contextExample contextExample contextExample contextExample context
Can mental health be predicted from fysical health, economic class, and gender?Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$?Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women.
SPSSSPSSSPSSSPSSn.a.
Analyze > Regression > Linear...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
Analyze > Compare Means > Paired-Samples T Test...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
-
JamoviJamoviJamoviJamovin.a.
Regression > Linear Regression
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
T-Tests > Paired Samples T-Test
  • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
  • Under Hypothesis, select your alternative hypothesis
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Student's (selected by default)
  • Under Hypothesis, select your alternative hypothesis
-
Practice questionsPractice questionsPractice questionsPractice questionsPractice questions