Kruskal-Wallis test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Kruskal-Wallis test
Friedman test
Independent variableIndependent variable
One categorical with $I$ independent groups ($I \geqslant 2$)One within subject factor ($\geq 2$ related groups)
Dependent variableDependent variable
One of ordinal levelOne of ordinal level
Null hypothesisNull hypothesis
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
• The medians in the $I$ populations are equal
Else:
Formulation 1:
• The scores in any of the $I$ populations are not systematically higher or lower than the scores in any of the other populations
Formulation 2:
• P(an observation from population $g$ exceeds an observation from population $h$) = P(an observation from population $h$ exceeds an observation from population $g$), for each pair of groups.
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
The scores in any of the related groups are not systematically higher or lower than the scores in any of the other related groups

Note: usually, the related groups are the different measurement points

Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
Alternative hypothesisAlternative hypothesis
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
• Not all of the medians in the $I$ populations are equal
Else:
Formulation 1:
• The scores in some populations are systematically higher or lower than the scores in other populations
Formulation 2:
• For at least one pair of groups:
P(an observation from population $g$ exceeds an observation from population $h$) $\neq$ P(an observation from population $h$ exceeds an observation from population $g$)
The scores in some of the related groups are systematically higher or lower than the scores in other related groups
AssumptionsAssumptions
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statisticTest statistic

$H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i} - 3(N + 1)$

Here $N$ is the total sample size, $R_i$ is the sum of ranks in group $i$, and $n_i$ is the sample size of group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N (N + 1)} \times \sum \frac{R^2_i}{n_i}$ and then subtract $3(N + 1)$.

Note: if ties are present in the data, the formula for $H$ is more complicated.
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$

Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.

Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.

Note: if ties are present in the data, the formula for $Q$ is more complicated.
Sampling distribution of $H$ if H0 were trueSampling distribution of $Q$ if H0 were true

For large samples, approximately the chi-squared distribution with $I - 1$ degrees of freedom.

For small samples, the exact distribution of $H$ should be used.

If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.

For small samples, the exact distribution of $Q$ should be used.
Significant?Significant?
For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Example contextExample context
Do people from different religions tend to score differently on social economic status? Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)?
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
• Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
• Click on the Define Range... button. If you can't click on it, first click on the grouping variable so its background turns yellow
• Fill in the smallest value you have used to indicate your groups in the box next to Minimum, and the largest value you have used to indicate your groups in the box next to Maximum
• Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
• Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
• Under Test Type, select the Friedman test
JamoviJamovi
ANOVA > One Way ANOVA - Kruskal-Wallis
• Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
ANOVA > Repeated Measures ANOVA - Friedman
• Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Practice questionsPractice questions