Logistic regression - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Logistic regression
Spearman's rho
Regression (OLS)
Independent variablesIndependent variableIndependent variables
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesOne of ordinal levelOne or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
Dependent variableDependent variableDependent variable
One categorical with 2 independent groupsOne of ordinal levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
Model chi-squared test for the complete regression model:
  • $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
  • $\beta_k = 0$
    or in terms of odds ratio:
  • $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
  • $\beta_k = 0$
    or in terms of odds ratio:
  • $e^{\beta_k} = 1$
in the regression equation $ \ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K $
$\rho_s = 0$
$\rho_s$ is the unknown Spearman correlation in the population.

In words:
there is no monotonic relationship between the two variables in the population
$F$ test for the complete regression model:
  • $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
    or equivalenty
  • The variance explained by all the independent variables together (the complete model) is 0 in the population: $\rho^2 = 0$
$t$ test for individual regression coefficient $\beta_k$:
  • $\beta_k = 0$
in the regression equation $ \mu_y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K $
Alternative hypothesisAlternative hypothesisAlternative hypothesis
Model chi-squared test for the complete regression model:
  • not all population regression coefficients are 0
Wald test for individual $\beta_k$:
  • $\beta_k \neq 0$
    or in terms of odds ratio:
  • $e^{\beta_k} \neq 1$
    If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
  • right sided: $\beta_k > 0$
  • left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual $\beta_k$:
  • $\beta_k \neq 0$
    or in terms of odds ratio:
  • $e^{\beta_k} \neq 1$
Two sided: $\rho_s \neq 0$
Right sided: $\rho_s > 0$
Left sided: $\rho_s < 0$
$F$ test for the complete regression model:
  • not all population regression coefficients are 0
    or equivalenty
  • The variance explained by all the independent variables together (the complete model) is larger than 0 in the population: $\rho^2 > 0$
$t$ test for individual $\beta_k$:
  • Two sided: $\beta_k \neq 0$
  • Right sided: $\beta_k > 0$
  • Left sided: $\beta_k < 0$
AssumptionsAssumptionsAssumptions
  • In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another

Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
  • In the population, the residuals are normally distributed at each combination of values of the independent variables
  • In the population, the standard deviation $\sigma$ of the residuals is the same for each combination of values of the independent variables (homoscedasticity)
  • In the population, the relationship between the independent variables and the mean of the dependent variable $\mu_y$ is linear. If this linearity assumption holds, the mean of the residuals is 0 for each combination of values of the independent variables
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
Test statisticTest statisticTest statistic
Model chi-squared test for the complete regression model:
  • $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
    $D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
  • Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
  • Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition

Likelihood ratio chi-squared test for individual $\beta_k$:
  • $X^2 = D_{K-1} - D_K$
    $D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $
where $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
$F$ test for the complete regression model:
  • $ \begin{aligned}[t] F &= \dfrac{\sum (\hat{y}_j - \bar{y})^2 / K}{\sum (y_j - \hat{y}_j)^2 / (N - K - 1)}\\ &= \dfrac{\mbox{sum of squares model} / \mbox{degrees of freedom model}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square model}}{\mbox{mean square error}} \end{aligned} $
    where $\hat{y}_j$ is the predicted score on the dependent variable $y$ of subject $j$, $\bar{y}$ is the mean of $y$, $y_j$ is the score on $y$ of subject $j$, $N$ is the total sample size, and $K$ is the number of independent variables
$t$ test for individual $\beta_k$:
  • $t = \dfrac{b_k}{SE_{b_k}}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$, with $s$ the sample standard deviation of the residuals, $x_j$ the score of subject $j$ on the independent variable $x$, and $\bar{x}$ the mean of $x$. For models with more than one independent variable, computing $SE_{b_k}$ becomes complicated
Note 1: mean square model is also known as mean square regression; mean square error is also known as mean square residual
Note 2: if only one independent variable ($K = 1$), the $F$ test for the complete regression model is equivalent to the two sided $t$ test for $\beta_1$
n.a.n.a.Sample standard deviation of the residuals $s$
--$\begin{aligned} s &= \sqrt{\dfrac{\sum (y_j - \hat{y}_j)^2}{N - K - 1}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $
Sampling distribution of $X^2$ and of the Wald statistic if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $F$ and of $t$ if H0 were true
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
  • chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
  • If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: approximately a chi-squared distribution with 1 degree of freedom
  • If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: approximately a standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
  • chi-squared distribution with 1 degree of freedom
Approximately a $t$ distribution with $N - 2$ degrees of freedomSampling distribution of $F$:
  • $F$ distribution with $K$ (df model, numerator) and $N - K - 1$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - K - 1$ (df error) degrees of freedom
Significant?Significant?Significant?
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
  • If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
  • If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
Two sided: Right sided: Left sided: $F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided:
Wald-type approximate $C\%$ confidence interval for $\beta_k$n.a.$C\%$ confidence interval for $\beta_k$ and for $\mu_y$; $C\%$ prediction interval for $y_{new}$
$b_k \pm z^* \times SE_{b_k}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
-Confidence interval for $\beta_k$:
  • $b_k \pm t^* \times SE_{b_k}$
    • If only one independent variable:
      $SE_{b_1} = \dfrac{\sqrt{\sum (y_j - \hat{y}_j)^2 / (N - 2)}}{\sqrt{\sum (x_j - \bar{x})^2}} = \dfrac{s}{\sqrt{\sum (x_j - \bar{x})^2}}$
Confidence interval for $\mu_y$, the population mean of $y$ given the values on the independent variables:
  • $\hat{y} \pm t^* \times SE_{\hat{y}}$
    • If only one independent variable:
      $SE_{\hat{y}} = s \sqrt{\dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
Prediction interval for $y_{new}$, the score on $y$ of a future respondent:
  • $\hat{y} \pm t^* \times SE_{y_{new}}$
    • If only one independent variable:
      $SE_{y_{new}} = s \sqrt{1 + \dfrac{1}{N} + \dfrac{(x^* - \bar{x})^2}{\sum (x_j - \bar{x})^2}}$
In all formulas, the critical value $t^*$ is the value under the $t_{N - K - 1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
Goodness of fit measure $R^2_L$n.a.Effect size
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
-Complete model:
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the sample regression equation (the independent variables):
    $$ \begin{align} R^2 &= \dfrac{\sum (\hat{y}_j - \bar{y})^2}{\sum (y_j - \bar{y})^2}\\ &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}\\ &= 1 - \dfrac{\mbox{sum of squares error}}{\mbox{sum of squares total}}\\ &= r(y, \hat{y})^2 \end{align} $$
    $R^2$ is the proportion variance explained in the sample by the sample regression equation. It is a positively biased estimate of the proportion variance explained in the population by the population regression equation, $\rho^2$. If there is only one independent variable, $R^2 = r^2$: the correlation between the independent variable $x$ and dependent variable $y$ squared.
  • Wherry's $R^2$ / shrunken $R^2$:
    Corrects for the positive bias in $R^2$ and is equal to $$R^2_W = 1 - \frac{N - 1}{N - K - 1}(1 - R^2)$$
    $R^2_W$ is a less biased estimate than $R^2$ of the proportion variance explained in the population by the population regression equation, $\rho^2$
  • Stein's $R^2$:
    Estimates the proportion of variance in $y$ that we expect the current sample regression equation to explain in a different sample drawn from the same population. It is equal to $$R^2_S = 1 - \frac{(N - 1)(N - 2)(N + 1)}{(N - K - 1)(N - K - 2)(N)}(1 - R^2)$$
Per independent variable:
  • Correlation squared $r^2_k$: the proportion of the total variance in the dependent variable $y$ that is explained by the independent variable $x_k$, not corrected for the other independent variables in the model
  • Semi-partial correlation squared $sr^2_k$: the proportion of the total variance in the dependent variable $y$ that is uniquely explained by the independent variable $x_k$, beyond the part that is already explained by the other independent variables in the model
  • Partial correlation squared $pr^2_k$: the proportion of the variance in the dependent variable $y$ not explained by the other independent variables, that is uniquely explained by the independent variable $x_k$
n.a.n.a.ANOVA table
--
ANOVA table regression analysis
Example contextExample contextExample context
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?Is there a monotonic relationship between physical health and mental health?Can mental health be predicted from fysical health, economic class, and gender?
SPSSSPSSSPSS
Analyze > Regression > Binary Logistic...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
  • Under Correlation Coefficients, select Spearman
Analyze > Regression > Linear...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Independent(s)
JamoviJamoviJamovi
Regression > 2 Outcomes - Binomial
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Spearman
  • Under Hypothesis, select your alternative hypothesis
Regression > Linear Regression
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Practice questionsPractice questionsPractice questions