Logistic regression  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Logistic regression  Spearman's rho  One sample Wilcoxon signedrank test 


Independent variables  Independent variable  Independent variable  
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables  One of ordinal level  None  
Dependent variable  Dependent variable  Dependent variable  
One categorical with 2 independent groups  One of ordinal level  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  
Model chisquared test for the complete regression model:
 $\rho_s = 0$
$\rho_s$ is the unknown Spearman correlation in the population. In words: there is no monotonic relationship between the two variables in the population  $m = m_0$
$m$ is the unknown population median; $m_0$ is the population median according to the null hypothesis  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
Model chisquared test for the complete regression model:
 Two sided: $\rho_s \neq 0$ Right sided: $\rho_s > 0$ Left sided: $\rho_s < 0$ 
 
Assumptions  Assumptions  Assumptions  
 Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables. 
 
Test statistic  Test statistic  Test statistic  
Model chisquared test for the complete regression model:
The wald statistic can be defined in two ways:
Likelihood ratio chisquared test for individual $\beta_k$:
 $t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ where $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  Two different types of test statistics can be used; both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 
Sampling distribution of $X^2$ and of the Wald statistic if H0 were true  Sampling distribution of $t$ if H0 were true  Sampling distribution of $W_1$ and of $W_2$ if H0 were true  
Sampling distribution of $X^2$, as computed in the model chisquared test for the complete model:
 Approximately a $t$ distribution with $N  2$ degrees of freedom  Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately a standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately a standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated if ties are present in the data.  
Significant?  Significant?  Significant?  
For the model chisquared test for the complete regression model and likelihood ratio chisquared test for individual $\beta_k$:
 Two sided:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
Waldtype approximate $C\%$ confidence interval for $\beta_k$  n.a.  n.a.  
$b_k \pm z^* \times SE_{b_k}$ where $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)      
Goodness of fit measure $R^2_L$  n.a.  n.a.  
$R^2_L = \dfrac{D_{null}  D_K}{D_{null}}$ There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.      
Example context  Example context  Example context  
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?  Is there a monotonic relationship between physical health and mental health?  Is the median mental health score different from 50?  
SPSS  SPSS  SPSS  
Analyze > Regression > Binary Logistic...
 Analyze > Correlate > Bivariate...
 Specify the measurement level of your variable on the Variable View tab, in the column named Measure. Then go to:
Analyze > Nonparametric Tests > One Sample...
 
Jamovi  Jamovi  Jamovi  
Regression > 2 Outcomes  Binomial
 Regression > Correlation Matrix
 TTests > One Sample TTest
 
Practice questions  Practice questions  Practice questions  