Logistic regression - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Logistic regression
Pearson correlation
Mann-Whitney-Wilcoxon test
You cannot compare more than 3 methods
Independent variablesVariable 1Independent/grouping variable
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesOne quantitative of interval or ratio levelOne categorical with 2 independent groups
Dependent variableVariable 2Dependent variable
One categorical with 2 independent groupsOne quantitative of interval or ratio levelOne of ordinal level
Null hypothesisNull hypothesisNull hypothesis
Model chi-squared test for the complete regression model:
  • H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
  • H0: $\beta_k = 0$
    or in terms of odds ratio:
  • H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
  • H0: $\beta_k = 0$
    or in terms of odds ratio:
  • H0: $e^{\beta_k} = 1$
in the regression equation $ \ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K $. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $ y = 1$ (or equivalently, the proportion of $ y = 1$ in the population) given the scores on the independent variables.
H0: $\rho = \rho_0$

Here $\rho$ is the Pearson correlation in the population, and $\rho_0$ is the Pearson correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
  • H0: the population median for group 1 is equal to the population median for group 2
Else:
Formulation 1:
  • H0: the population scores in group 1 are not systematically higher or lower than the population scores in group 2
Formulation 2:
  • H0: P(an observation from population 1 exceeds an observation from population 2) = P(an observation from population 2 exceeds observation from population 1)
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
Model chi-squared test for the complete regression model:
  • H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
  • H1: $\beta_k \neq 0$
    or in terms of odds ratio:
  • H1: $e^{\beta_k} \neq 1$
    If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
  • H1 right sided: $\beta_k > 0$
  • H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
  • H1: $\beta_k \neq 0$
    or in terms of odds ratio:
  • H1: $e^{\beta_k} \neq 1$
H1 two sided: $\rho \neq \rho_0$
H1 right sided: $\rho > \rho_0$
H1 left sided: $\rho < \rho_0$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
  • H1 two sided: the population median for group 1 is not equal to the population median for group 2
  • H1 right sided: the population median for group 1 is larger than the population median for group 2
  • H1 left sided: the population median for group 1 is smaller than the population median for group 2
Else:
Formulation 1:
  • H1 two sided: the population scores in group 1 are systematically higher or lower than the population scores in group 2
  • H1 right sided: the population scores in group 1 are systematically higher than the population scores in group 2
  • H1 left sided: the population scores in group 1 are systematically lower than the population scores in group 2
Formulation 2:
  • H1 two sided: P(an observation from population 1 exceeds an observation from population 2) $\neq$ P(an observation from population 2 exceeds an observation from population 1)
  • H1 right sided: P(an observation from population 1 exceeds an observation from population 2) > P(an observation from population 2 exceeds an observation from population 1)
  • H1 left sided: P(an observation from population 1 exceeds an observation from population 2) < P(an observation from population 2 exceeds an observation from population 1)
AssumptionsAssumptions of test for correlationAssumptions
  • In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
  • The residuals are independent of one another
Often ignored additional assumption:
  • Variables are measured without error
Also pay attention to:
  • Multicollinearity
  • Outliers
  • In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statistic
Model chi-squared test for the complete regression model:
  • $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
    $D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
  • Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
  • Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.

Likelihood ratio chi-squared test for individual $\beta_k$:
  • $X^2 = D_{K-1} - D_K$
    $D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
Test statistic for testing H0: $\rho = 0$:
  • $t = \dfrac{r \times \sqrt{N - 2}}{\sqrt{1 - r^2}} $
    where $r$ is the sample correlation $r = \frac{1}{N - 1} \sum_{j}\Big(\frac{x_{j} - \bar{x}}{s_x} \Big) \Big(\frac{y_{j} - \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
  • $z = \dfrac{r_{Fisher} - \rho_{0_{Fisher}}}{\sqrt{\dfrac{1}{N - 3}}}$
    • $r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$, where $r$ is the sample correlation
    • $\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1 - \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$: The second type of test statistic is the Mann-Whitney $U$ statistic:
  • $U = W - \dfrac{n_1(n_1 + 1)}{2}$
where $n_1$ is the sample size of group 1.

Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.
Sampling distribution of $X^2$ and of the Wald statistic if H0 were trueSampling distribution of $t$ and of $z$ if H0 were trueSampling distribution of $W$ and of $U$ if H0 were true
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
  • chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
  • If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: approximately the chi-squared distribution with 1 degree of freedom
  • If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: approximately the standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
  • chi-squared distribution with 1 degree of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - 2$ degrees of freedom
Sampling distribution of $z$:
  • Approximately the standard normal distribution

Sampling distribution of $W$:
For large samples, $W$ is approximately normally distributed with mean $\mu_W$ and standard deviation $\sigma_W$ if the null hypothesis were true. Here $$ \begin{aligned} \mu_W &= \dfrac{n_1(n_1 + n_2 + 1)}{2}\\ \sigma_W &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}} \end{aligned} $$ Hence, for large samples, the standardized test statistic $$ z_W = \dfrac{W - \mu_W}{\sigma_W}\\ $$ follows approximately the standard normal distribution if the null hypothesis were true. Note that if your $W$ value is based on group 2, $\mu_W$ becomes $\frac{n_2(n_1 + n_2 + 1)}{2}$.

Sampling distribution of $U$:
For large samples, $U$ is approximately normally distributed with mean $\mu_U$ and standard deviation $\sigma_U$ if the null hypothesis were true. Here $$ \begin{aligned} \mu_U &= \dfrac{n_1 n_2}{2}\\ \sigma_U &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}} \end{aligned} $$ Hence, for large samples, the standardized test statistic $$ z_U = \dfrac{U - \mu_U}{\sigma_U}\\ $$ follows approximately the standard normal distribution if the null hypothesis were true.

For small samples, the exact distribution of $W$ or $U$ should be used.

Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.
Significant?Significant?Significant?
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
  • If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
  • If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
$t$ Test two sided: $t$ Test right sided: $t$ Test left sided: $z$ Test two sided: $z$ Test right sided: $z$ Test left sided: For large samples, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
Wald-type approximate $C\%$ confidence interval for $\beta_k$Approximate $C$% confidence interval for $\rho$n.a.
$b_k \pm z^* \times SE_{b_k}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
First compute the approximate $C$% confidence interval for $\rho_{Fisher}$:
  • $lower_{Fisher} = r_{Fisher} - z^* \times \sqrt{\dfrac{1}{N - 3}}$
  • $upper_{Fisher} = r_{Fisher} + z^* \times \sqrt{\dfrac{1}{N - 3}}$
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1 - r} \Bigg )$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get the approximate $C$% confidence interval for $\rho$:
  • lower bound = $\dfrac{e^{2 \times lower_{Fisher}} - 1}{e^{2 \times lower_{Fisher}} + 1}$
  • upper bound = $\dfrac{e^{2 \times upper_{Fisher}} - 1}{e^{2 \times upper_{Fisher}} + 1}$
-
Goodness of fit measure $R^2_L$Properties of the Pearson correlation coefficientn.a.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
  • The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
  • The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
  • The Pearson correlation coefficient can take on values between -1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
  • The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable).
    For example:
    • the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y - 6$.
    • the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $-3x + 5$ and $2y - 6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $-3$.
  • The Pearson correlation coefficient does not say anything about causality.
  • The Pearson correlation coefficient is sensitive to outliers.
-
n.a.Equivalent toEquivalent to
-OLS regression with one independent variable:
  • $b_1 = r \times \frac{s_y}{s_x}$
  • Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
If there are no ties in the data, the two sided Mann-Whitney-Wilcoxon test is equivalent to the Kruskal-Wallis test with an independent variable with 2 levels ($I$ = 2).
Example contextExample contextExample context
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?Is there a linear relationship between physical health and mental health?Do men tend to score higher on social economic status than women?
SPSSSPSSSPSS
Analyze > Regression > Binary Logistic...
  • Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
  • Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
JamoviJamoviJamovi
Regression > 2 Outcomes - Binomial
  • Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
  • If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
  • Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Pearson (selected by default)
  • Under Hypothesis, select your alternative hypothesis
T-Tests > Independent Samples T-Test
  • Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Mann-Whitney U
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questionsPractice questions