# Logistic regression - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Logistic regression
Logistic regression
Goodness of fit test
Independent variablesIndependent variablesIndependent variable
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesOne or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variablesNone
Dependent variableDependent variableDependent variable
One categorical with 2 independent groupsOne categorical with 2 independent groupsOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesisNull hypothesis
Model chi-squared test for the complete regression model:
• $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
• $\beta_k = 0$
or in terms of odds ratio:
• $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
• $\beta_k = 0$
or in terms of odds ratio:
• $e^{\beta_k} = 1$
in the regression equation $\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$
Model chi-squared test for the complete regression model:
• $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
• $\beta_k = 0$
or in terms of odds ratio:
• $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
• $\beta_k = 0$
or in terms of odds ratio:
• $e^{\beta_k} = 1$
in the regression equation $\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K$
• The population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
• The probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
Alternative hypothesisAlternative hypothesisAlternative hypothesis
Model chi-squared test for the complete regression model:
• not all population regression coefficients are 0
Wald test for individual $\beta_k$:
• $\beta_k \neq 0$
or in terms of odds ratio:
• $e^{\beta_k} \neq 1$
If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
• right sided: $\beta_k > 0$
• left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual $\beta_k$:
• $\beta_k \neq 0$
or in terms of odds ratio:
• $e^{\beta_k} \neq 1$
Model chi-squared test for the complete regression model:
• not all population regression coefficients are 0
Wald test for individual $\beta_k$:
• $\beta_k \neq 0$
or in terms of odds ratio:
• $e^{\beta_k} \neq 1$
If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
• right sided: $\beta_k > 0$
• left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual $\beta_k$:
• $\beta_k \neq 0$
or in terms of odds ratio:
• $e^{\beta_k} \neq 1$
• The population proportions are not all as specified under the null hypothesis
or equivalently
• The probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
AssumptionsAssumptionsAssumptions
• In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
• The residuals are independent of one another
• Variables are measured without error
Also pay attention to:
• Multicollinearity
• Outliers
• In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
• The residuals are independent of one another
• Variables are measured without error
Also pay attention to:
• Multicollinearity
• Outliers
• Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statisticTest statistic
Model chi-squared test for the complete regression model:
• $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance}$
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
• Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$
• Wald $= \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition

Likelihood ratio chi-squared test for individual $\beta_k$:
• $X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
Model chi-squared test for the complete regression model:
• $X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance}$
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
• Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$
• Wald $= \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition

Likelihood ratio chi-squared test for individual $\beta_k$:
• $X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells
Sampling distribution of $X^2$ and of the Wald statistic if H0 were trueSampling distribution of $X^2$ and of the Wald statistic if H0 were trueSampling distribution of $X^2$ if H0 were true
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
• chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: approximately a chi-squared distribution with 1 degree of freedom
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: approximately a standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
• chi-squared distribution with 1 degree of freedom
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
• chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: approximately a chi-squared distribution with 1 degree of freedom
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: approximately a standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
• chi-squared distribution with 1 degree of freedom
Approximately a chi-squared distribution with $J - 1$ degrees of freedom
Significant?Significant?Significant?
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
• If defined as Wald $= \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
• If defined as Wald $= \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Wald-type approximate $C\%$ confidence interval for $\beta_k$Wald-type approximate $C\%$ confidence interval for $\beta_k$n.a.
$b_k \pm z^* \times SE_{b_k}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
$b_k \pm z^* \times SE_{b_k}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
-
Goodness of fit measure $R^2_L$Goodness of fit measure $R^2_L$n.a.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
-
Example contextExample contextExample context
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low}$ = .2, $\pi_{moderate}$ = .6, and $\pi_{high}$ = .2?
SPSSSPSSSPSS
Analyze > Regression > Binary Logistic...
• Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Regression > Binary Logistic...
• Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
• Put your categorical variable in the box below Test Variable List
• Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
JamoviJamoviJamovi
Regression > 2 Outcomes - Binomial
• Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
• If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
• Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > 2 Outcomes - Binomial
• Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
• If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
• Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
• Put your categorical variable in the box below Variable
• Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Practice questionsPractice questionsPractice questions