Logistic regression  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Logistic regression  Two sample $t$ test  equal variances not assumed  Sign test 


Independent variables  Independent variable  Independent variable  
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables  One categorical with 2 independent groups  2 paired groups  
Dependent variable  Dependent variable  Dependent variable  
One categorical with 2 independent groups  One quantitative of interval or ratio level  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  
Model chisquared test for the complete regression model:
 $\mu_1 = \mu_2$
$\mu_1$ is the unknown mean in population 1, $\mu_2$ is the unknown mean in population 2 
 
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
Model chisquared test for the complete regression model:
 Two sided: $\mu_1 \neq \mu_2$ Right sided: $\mu_1 > \mu_2$ Left sided: $\mu_1 < \mu_2$ 
 
Assumptions  Assumptions  Assumptions  

 Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another  
Test statistic  Test statistic  Test statistic  
Model chisquared test for the complete regression model:
The wald statistic can be defined in two ways:
Likelihood ratio chisquared test for individual $\beta_k$:
 $t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
$\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to H0. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$  $W = $ number of difference scores that is larger than 0  
Sampling distribution of $X^2$ and of the Wald statistic if H0 were true  Sampling distribution of $t$ if H0 were true  Sampling distribution of $W$ if H0 were true  
Sampling distribution of $X^2$, as computed in the model chisquared test for the complete model:
 Approximately a $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1  1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2  1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$  1 and $n_2$  1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations  The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $p$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $p = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $np = n \times 0.5$ and standard deviation $\sqrt{np(1p)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately a standard normal distribution if the null hypothesis were true.  
Significant?  Significant?  Significant?  
For the model chisquared test for the complete regression model and likelihood ratio chisquared test for individual $\beta_k$:
 Two sided:
 If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 
Waldtype approximate $C\%$ confidence interval for $\beta_k$  Approximate $C\%$ confidence interval for $\mu_1  \mu_2$  n.a.  
$b_k \pm z^* \times SE_{b_k}$ where $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)  $(\bar{y}_1  \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20) The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.    
Goodness of fit measure $R^2_L$  n.a.  n.a.  
$R^2_L = \dfrac{D_{null}  D_K}{D_{null}}$ There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.      
n.a.  Visual representation  n.a.  
    
n.a.  n.a.  Equivalent to  
   
Two sided sign test is equivalent to
 
Example context  Example context  Example context  
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?  Is the average mental health score different between men and women?  Do people tend to score higher on mental health after a mindfulness course?  
SPSS  SPSS  SPSS  
Analyze > Regression > Binary Logistic...
 Analyze > Compare Means > IndependentSamples T Test...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  Jamovi  
Regression > 2 Outcomes  Binomial
 TTests > Independent Samples TTest
 Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  Practice questions  