ANCOVA - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

ANCOVA
Spearman's rho
One sample $z$ test for the mean
You cannot compare more than 3 methods
Independent variablesVariable 1Independent variable
One or more categorical with independent groups, and one or more quantitative control variables of interval or ratio level (covariates)One of ordinal levelNone
Dependent variableVariable 2Dependent variable
One quantitative of interval or ratio levelOne of ordinal levelOne quantitative of interval or ratio level
THIS TABLE IS YET TO BE COMPLETEDNull hypothesisNull hypothesis
-H0: $\rho_s = 0$

Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level.

In words, the null hypothesis would be:

H0: there is no monotonic relationship between the two variables in the population.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
n.a.Alternative hypothesisAlternative hypothesis
-H1 two sided: $\rho_s \neq 0$
H1 right sided: $\rho_s > 0$
H1 left sided: $\rho_s < 0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
n.a.AssumptionsAssumptions
-
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
n.a.Test statisticTest statistic
-$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $
Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$.
n.a.Sampling distribution of $t$ if H0 were trueSampling distribution of $z$ if H0 were true
-Approximately the $t$ distribution with $N - 2$ degrees of freedomStandard normal distribution
n.a.Significant?Significant?
-Two sided: Right sided: Left sided: Two sided: Right sided: Left sided:
n.a.n.a.$C\%$ confidence interval for $\mu$
--$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu$ can also be used as significance test.
n.a.n.a.Effect size
--Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$
n.a.n.a.Visual representation
--
One sample z test
n.a.Example contextExample context
-Is there a monotonic relationship between physical health and mental health?Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$
n.a.SPSSn.a.
-Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
  • Under Correlation Coefficients, select Spearman
-
n.a.Jamovin.a.
-Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Spearman
  • Under Hypothesis, select your alternative hypothesis
-
Practice questionsPractice questionsPractice questions