Goodness of fit test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Goodness of fit test
Cochran's Q test
Independent variableIndependent variable
NoneOne within subject factor ($\geq 2$ related groups)
Dependent variableDependent variable
One categorical with $J$ independent groups ($J \geqslant 2$)One categorical with 2 independent groups
Null hypothesisNull hypothesis
  • The population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
  • The probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
$\pi_1 = \pi_2 = \ldots = \pi_I$
$\pi_1$ is the population proportion of 'successes' in group 1; $\pi_2$ is the population proportion of 'successes' in group 2; $\pi_I$ is the population proportion of 'successes' in group $I$
Alternative hypothesisAlternative hypothesis
  • The population proportions are not all as specified under the null hypothesis
or equivalently
  • The probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
Not all population proportions are equal
AssumptionsAssumptions
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statisticTest statistic
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells
If a failure is scored as 0 and a success is scored as 1:

$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$

Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.

Before computing $Q$, first exclude blocks with equal scores in all $k$ groups
Sampling distribution of $X^2$ if H0 were trueSampling distribution of $Q$ if H0 were true
Approximately a chi-squared distribution with $J - 1$ degrees of freedomIf the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom
Significant?Significant?
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
n.a.Equivalent to
-Friedman test, with a categorical dependent variable consisting of two independent groups
Example contextExample context
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low}$ = .2, $\pi_{moderate}$ = .6, and $\pi_{high}$ = .2?Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
  • Put your categorical variable in the box below Test Variable List
  • Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select Cochran's Q test
JamoviJamovi
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
  • Put your categorical variable in the box below Variable
  • Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Practice questionsPractice questions