Sign test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Sign test
Multinomial logistic regression
Independent variableIndependent variables
2 paired groupsOne or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
Dependent variableDependent variable
One of ordinal levelOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisTHIS TABLE IS YET TO BE COMPLETED
  • H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
-
Alternative hypothesisn.a.
  • H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H1 two sided: the population median of the difference scores is different from zero
  • H1 right sided: the population median of the difference scores is larger than zero
  • H1 left sided: the population median of the difference scores is smaller than zero
-
Assumptionsn.a.
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
-
Test statisticn.a.
$W = $ number of difference scores that is larger than 0-
Sampling distribution of $W$ if H0 were truen.a.
The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
-
Significant?n.a.
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
-
Equivalent ton.a.
Two sided sign test is equivalent to -
Example contextn.a.
Do people tend to score higher on mental health after a mindfulness course?-
SPSSn.a.
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
-
Jamovin.a.
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
-
Practice questionsPractice questions