Chi-squared test for the relationship between two categorical variables - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Chi-squared test for the relationship between two categorical variables
One sample $z$ test for the mean
Independent /column variableIndependent variable
One categorical with $I$ independent groups ($I \geqslant 2$)None
Dependent /row variableDependent variable
One categorical with $J$ independent groups ($J \geqslant 2$)One quantitative of interval or ratio level
Null hypothesisNull hypothesis
  • There is no association between the row and column variable
    More precise statement:
    • If there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
      The distribution of the dependent variable is the same in each of the $I$ populations
    • If there is one random sample of size $N$ from the total population:
      The row and column variables are independent
$\mu = \mu_0$
$\mu$ is the unknown population mean; $\mu_0$ is the population mean according to the null hypothesis
Alternative hypothesisAlternative hypothesis
  • There is an association between the row and column variable
    More precise statement:
    • If there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
      The distribution of the dependent variable is not the same in all of the $I$ populations
    • If there is one random sample of size $N$ from the total population:
      The row and column variables are dependent
Two sided: $\mu \neq \mu_0$
Right sided: $\mu > \mu_0$
Left sided: $\mu < \mu_0$
AssumptionsAssumptions
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
    • 2 $\times$ 2 table: all four expected cell counts are 5 or more
    • Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
  • There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
  • Scores are normally distributed in the population
  • Population standard deviation $\sigma$ is known
  • Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statistic
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells
$z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
$\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to H0, $\sigma$ is the population standard deviation, $N$ is the sample size.

The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$
Sampling distribution of $X^2$ if H0 were trueSampling distribution of $z$ if H0 were true
Approximately a chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedomStandard normal
Significant?Significant?
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided:
n.a.$C\%$ confidence interval for $\mu$
-$\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)

The confidence interval for $\mu$ can also be used as significance test.
n.a.Effect size
-Cohen's $d$:
Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0$
n.a.Visual representation
-
One sample z test
Example contextExample context
Is there an association between economic class and gender? Is the distribution of economic class different between men and women?Is the average mental health score of office workers different from $\mu_0$ = 50? Assume that the standard deviation of the mental health scores in the population is $\sigma$ = 3.
SPSSn.a.
Analyze > Descriptive Statistics > Crosstabs...
  • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
-
Jamovin.a.
Frequencies > Independent Samples - $\chi^2$ test of association
  • Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
-
Practice questionsPractice questions