# Marginal Homogeneity test / Stuart-Maxwell test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Marginal Homogeneity test / Stuart-Maxwell test
Goodness of fit test
Independent variableIndependent variable
2 paired groupsNone
Dependent variableDependent variable
One categorical with $J$ independent groups ($J \geqslant 2$)One categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesis
For each category $j$ of the dependent variable:

$\pi_j$ in the first paired group = $\pi_j$ in the second paired group

Here $\pi_j$ is the population proportion for category $j$
• The population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
• The probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
Alternative hypothesisAlternative hypothesis
For some categories of the dependent variable, $\pi_j$ in the first paired group $\neq$ $\pi_j$ in the second paired group
• The population proportions are not all as specified under the null hypothesis
or equivalently
• The probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
AssumptionsAssumptions
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
• Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
Test statisticTest statistic
Computing the test statistic is a bit complicated and involves matrix algebra. You probably won't need to calculate it by hand (unless you are following a technical course)$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
where the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells
Sampling distribution of the test statistic if H0 were trueSampling distribution of $X^2$ if H0 were true
Approximately a chi-squared distribution with $J - 1$ degrees of freedomApproximately a chi-squared distribution with $J - 1$ degrees of freedom
Significant?Significant?
If we denote the test statistic as $X^2$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Example contextExample context
Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best?Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low}$ = .2, $\pi_{moderate}$ = .6, and $\pi_{high}$ = .2?
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
• Put the two paired variables in the boxes below Variable 1 and Variable 2
• Under Test Type, select the Marginal Homogeneity test
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
• Put your categorical variable in the box below Test Variable List
• Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
n.a.Jamovi
-Frequencies > N Outcomes - $\chi^2$ Goodness of fit
• Put your categorical variable in the box below Variable
• Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Practice questionsPractice questions