Binomial test for a single proportion - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Binomial test for a single proportion
$z$ test for a single proportion
Independent variableIndependent variable
NoneNone
Dependent variableDependent variable
One categorical with 2 independent groupsOne categorical with 2 independent groups
Null hypothesisNull hypothesis
$\pi = \pi_0$
$\pi$ is the population proportion of "successes"; $\pi_0$ is the population proportion of successes according to the null hypothesis
$\pi = \pi_0$
$\pi$ is the population proportion of "successes"; $\pi_0$ is the population proportion of successes according to the null hypothesis
Alternative hypothesisAlternative hypothesis
Two sided: $\pi \neq \pi_0$
Right sided: $\pi > \pi_0$
Left sided: $\pi < \pi_0$
Two sided: $\pi \neq \pi_0$
Right sided: $\pi > \pi_0$
Left sided: $\pi < \pi_0$
AssumptionsAssumptions
Sample is a simple random sample from the population. That is, observations are independent of one another
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
• Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
Test statisticTest statistic
$X$ = number of successes in the sample$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
$p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size
Sampling distribution of $X$ if H0 were trueSampling distribution of $z$ if H0 were true
Binomial($n$, $p$) distribution

Here $n = N$ (total sample size), and $p = \pi_0$ (population proportion according to the null hypothesis)
Approximately standard normal
Significant?Significant?
Two sided:
• Check if $X$ observed in sample is in the rejection region or
• Find two sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Right sided:
• Check if $X$ observed in sample is in the rejection region or
• Find right sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Left sided:
• Check if $X$ observed in sample is in the rejection region or
• Find left sided $p$ value corresponding to observed $X$ and check if it is equal to or smaller than $\alpha$
Two sided:
Right sided:
Left sided:
n.a.Approximate $C\%$ confidence interval for $\pi$
-Regular (large sample):
• $p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}}$
where $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
• $p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}}$
where $p_{plus} = \dfrac{X + 2}{N + 4}$ and $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
n.a.Equivalent to
-
• When testing two sided: goodness of fit test, with categorical variable with 2 levels
• When $N$ is large, the $p$ value from the $z$ test for a single proportion approaches the $p$ value from the binomial test for a single proportion. The $z$ test for a single proportion is just a large sample approximation of the binomial test for a single proportion.
Example contextExample context
Is the proportion smokers amongst office workers different from $\pi_0 = .2$?Is the proportion smokers amongst office workers different from $\pi_0 = .2$? Use the normal approximation for the sampling distribution of the test statistic.
SPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
• Put your dichotomous variable in the box below Test Variable List
• Fill in the value for $\pi_0$ in the box next to Test Proportion
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
• Put your dichotomous variable in the box below Test Variable List
• Fill in the value for $\pi_0$ in the box next to Test Proportion
If computation time allows, SPSS will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
JamoviJamovi
Frequencies > 2 Outcomes - Binomial test
• Put your dichotomous variable in the white box at the right
• Fill in the value for $\pi_0$ in the box next to Test value
• Under Hypothesis, select your alternative hypothesis
Frequencies > 2 Outcomes - Binomial test
• Put your dichotomous variable in the white box at the right
• Fill in the value for $\pi_0$ in the box next to Test value
• Under Hypothesis, select your alternative hypothesis
Jamovi will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
Practice questionsPractice questions