Binomial test for a single proportion  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Binomial test for a single proportion  Wilcoxon signedrank test 


Independent variable  Independent variable  
None  2 paired groups  
Dependent variable  Dependent variable  
One categorical with 2 independent groups  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  
H_{0}: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.  H_{0}: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\pi \neq \pi_0$ H_{1} right sided: $\pi > \pi_0$ H_{1} left sided: $\pi < \pi_0$  H_{1} two sided: $m \neq 0$ H_{1} right sided: $m > 0$ H_{1} left sided: $m < 0$  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$X$ = number of successes in the sample  Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 
Sampling distribution of $X$ if H0 were true  Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  
Binomial($n$, $P$) distribution.
Here $n = N$ (total sample size), and $P = \pi_0$ (population proportion according to the null hypothesis).  Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.  
Significant?  Significant?  
Two sided:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
Example context  Example context  
Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$?  Is the median of the differences between the mental health scores before and after an intervention different from 0?  
SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  
Frequencies > 2 Outcomes  Binomial test
 TTests > Paired Samples TTest
 
Practice questions  Practice questions  