Two sample t test - equal variances assumed - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test - equal variances assumed |
|
---|---|
Independent/grouping variable | |
One categorical with 2 independent groups | |
Dependent variable | |
One quantitative of interval or ratio level | |
Null hypothesis | |
H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | |
Alternative hypothesis | |
H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | |
Assumptions | |
| |
Test statistic | |
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | |
Pooled standard deviation | |
$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$ | |
Sampling distribution of $t$ if H0 were true | |
$t$ distribution with $n_1 + n_2 - 2$ degrees of freedom | |
Significant? | |
Two sided:
| |
$C\%$ confidence interval for $\mu_1 - \mu_2$ | |
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | |
Effect size | |
Cohen's $d$: Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other. | |
Visual representation | |
Equivalent to | |
One way ANOVA with an independent variable with 2 levels ($I$ = 2):
| |
Example context | |
Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women. | |
SPSS | |
Analyze > Compare Means > Independent-Samples T Test...
| |
Jamovi | |
T-Tests > Independent Samples T-Test
| |
Practice questions | |