Two sample t test - equal variances assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances assumed
Chi-squared test for the relationship between two categorical variables
Independent/grouping variableIndependent /column variable
One categorical with 2 independent groupsOne categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variableDependent /row variable
One quantitative of interval or ratio levelOne categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesisNull hypothesis
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H0: there is no association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
  • H0: the distribution of the dependent variable is the same in each of the $I$ populations
If there is one random sample of size $N$ from the total population:
  • H0: the row and column variables are independent
Alternative hypothesisAlternative hypothesis
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
H1: there is an association between the row and column variable

More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
  • H1: the distribution of the dependent variable is not the same in all of the $I$ populations
If there is one random sample of size $N$ from the total population:
  • H1: the row and column variables are dependent
AssumptionsAssumptions
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed under the null hypothesis. Rule of thumb:
    • 2 $\times$ 2 table: all four expected cell counts are 5 or more
    • Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
  • There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
Test statisticTest statistic
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.
Pooled standard deviationn.a.
$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$-
Sampling distribution of $t$ if H0 were trueSampling distribution of $X^2$ if H0 were true
$t$ distribution with $n_1 + n_2 - 2$ degrees of freedomApproximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom
Significant?Significant?
Two sided: Right sided: Left sided:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$C\%$ confidence interval for $\mu_1 - \mu_2$n.a.
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
-
Effect sizen.a.
Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.
-
Visual representationn.a.
Two sample t test - equal variances assumed
-
Equivalent ton.a.
One way ANOVA with an independent variable with 2 levels ($I$ = 2):
  • two sided two sample $t$ test is equivalent to ANOVA $F$ test when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test for contrast when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test multiple comparisons when $I$ = 2
OLS regression with one categorical independent variable with 2 levels:
  • two sided two sample $t$ test is equivalent to $F$ test regression model
  • two sample $t$ test is equivalent to $t$ test for regression coefficient $\beta_1$
-
Example contextExample context
Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.Is there an association between economic class and gender? Is the distribution of economic class different between men and women?
SPSSSPSS
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
Analyze > Descriptive Statistics > Crosstabs...
  • Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
JamoviJamovi
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Student's (selected by default)
  • Under Hypothesis, select your alternative hypothesis
Frequencies > Independent Samples - $\chi^2$ test of association
  • Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns
Practice questionsPractice questions