This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)
One within subject factor ($\geq 2$ related groups)
Dependent variable
Dependent variable
One quantitative of interval or ratio level
One of ordinal level
Null hypothesis
Null hypothesis
ANOVA $F$ tests:
H_{0} for main and interaction effects together (model): no main effects and interaction effect
H_{0} for independent variable A: no main effect for A
H_{0} for independent variable B: no main effect for B
H_{0} for the interaction term: no interaction effect between A and B
Like in one way ANOVA, we can also perform $t$ tests for specific contrasts and multiple comparisons. This is more advanced stuff.
H_{0}: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
Alternative hypothesis
Alternative hypothesis
ANOVA $F$ tests:
H_{1} for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
H_{1} for independent variable A: there is a main effect for A
H_{1} for independent variable B: there is a main effect for B
H_{1} for the interaction term: there is an interaction effect between A and B
H_{1}: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups
Assumptions
Assumptions
Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statistic
Test statistic
For main and interaction effects together (model):
Here $N$ is the number of 'blocks' (usually the subjects  so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.
Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.
Note: if ties are present in the data, the formula for $Q$ is more complicated.
Pooled standard deviation
n.a.
$
\begin{aligned}
s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score}  \mbox{its group mean})^2}{N  (I \times J)}}\\
&= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\
&= \sqrt{\mbox{mean square error}}
\end{aligned}
$

Sampling distribution of $F$ if H_{0} were true
Sampling distribution of $Q$ if H_{0} were true
For main and interaction effects together (model):
$F$ distribution with $(I  1) + (J  1) + (I  1) \times (J  1)$ (df model, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
$F$ distribution with $I  1$ (df A, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
$F$ distribution with $J  1$ (df B, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
$F$ distribution with $(I  1) \times (J  1)$ (df interaction, numerator) and $N  (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size.
If the number of blocks $N$ is large, approximately the chisquared distribution with $k  1$ degrees of freedom.
For small samples, the exact distribution of
$Q$ should be used.
Significant?
Significant?
Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Effect size
n.a.
Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
$$
\begin{align}
R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}
\end{align}
$$
$R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\eta^2$:
Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
$$
\begin{align}
\eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\
\\
\eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\
\\
\eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}}
\end{align}
$$
$\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\omega^2$:
Corrects for the positive bias in $\eta^2$ and is equal to:
$$
\begin{align}
\omega^2_A &= \dfrac{\mbox{sum of squares A}  \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_B &= \dfrac{\mbox{sum of squares B}  \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_{int} &= \dfrac{\mbox{sum of squares int}  \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\end{align}
$$
$\omega^2$ is a better estimate of the explained variance in the population than
$\eta^2$. Only for balanced designs (equal sample sizes).
Proportion variance explained $\eta^2_{partial}$:
$$
\begin{align}
\eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}}
\end{align}
$$

ANOVA table
n.a.

Equivalent to
n.a.
OLS regression with two categorical independent variables and the interaction term, transformed into $(I  1)$ + $(J  1)$ + $(I  1) \times (J  1)$ code variables.

Example context
Example context
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?
Is there a difference in depression level between measurement point 1 (preintervention), measurement point 2 (1 week postintervention), and measurement point 3 (6 weeks postintervention)?
SPSS
SPSS
Analyze > General Linear Model > Univariate...
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
Under Test Type, select the Friedman test
Jamovi
Jamovi
ANOVA > ANOVA
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
ANOVA > Repeated Measures ANOVA  Friedman
Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures