Two way ANOVA - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two way ANOVA
Friedman test
Goodness of fit test
One way ANOVA
Independent/grouping variablesIndependent/grouping variableIndependent variableIndependent/grouping variable
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)One within subject factor ($\geq 2$ related groups)NoneOne categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne of ordinal levelOne categorical with $J$ independent groups ($J \geqslant 2$)One quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
ANOVA $F$ tests:
  • H0 for main and interaction effects together (model): no main effects and interaction effect
  • H0 for independent variable A: no main effect for A
  • H0 for independent variable B: no main effect for B
  • H0 for the interaction term: no interaction effect between A and B
Like in one way ANOVA, we can also perform $t$ tests for specific contrasts and multiple comparisons. This is more advanced stuff.
H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups

Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
  • H0: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
  • H0: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
ANOVA $F$ test:
  • H0: $\mu_1 = \mu_2 = \ldots = \mu_I$
    $\mu_1$ is the population mean for group 1; $\mu_2$ is the population mean for group 2; $\mu_I$ is the population mean for group $I$
$t$ Test for contrast:
  • H0: $\Psi = 0$
    $\Psi$ is the population contrast, defined as $\Psi = \sum a_i\mu_i$. Here $\mu_i$ is the population mean for group $i$ and $a_i$ is the coefficient for $\mu_i$. The coefficients $a_i$ sum to 0.
$t$ Test multiple comparisons:
  • H0: $\mu_g = \mu_h$
    $\mu_g$ is the population mean for group $g$; $\mu_h$ is the population mean for group $h$
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
ANOVA $F$ tests:
  • H1 for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
  • H1 for independent variable A: there is a main effect for A
  • H1 for independent variable B: there is a main effect for B
  • H1 for the interaction term: there is an interaction effect between A and B
H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups
  • H1: the population proportions are not all as specified under the null hypothesis
or equivalently
  • H1: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
ANOVA $F$ test:
  • H1: not all population means are equal
$t$ Test for contrast:
  • H1 two sided: $\Psi \neq 0$
  • H1 right sided: $\Psi > 0$
  • H1 left sided: $\Psi < 0$
$t$ Test multiple comparisons:
  • H1 - usually two sided: $\mu_g \neq \mu_h$
AssumptionsAssumptionsAssumptionsAssumptions
  • Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
  • For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
  • Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the populations: $\sigma_1 = \sigma_2 = \ldots = \sigma_I$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statisticTest statistic
For main and interaction effects together (model):
  • $F = \dfrac{\mbox{mean square model}}{\mbox{mean square error}}$
For independent variable A:
  • $F = \dfrac{\mbox{mean square A}}{\mbox{mean square error}}$
For independent variable B:
  • $F = \dfrac{\mbox{mean square B}}{\mbox{mean square error}}$
For the interaction term:
  • $F = \dfrac{\mbox{mean square interaction}}{\mbox{mean square error}}$
Note: mean square error is also known as mean square residual or mean square within.
$Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$

Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$.

Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$.

Note: if ties are present in the data, the formula for $Q$ is more complicated.
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.
ANOVA $F$ test:
  • $\begin{aligned}[t] F &= \dfrac{\sum\nolimits_{subjects} (\mbox{subject's group mean} - \mbox{overall mean})^2 / (I - 1)}{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2 / (N - I)}\\ &= \dfrac{\mbox{sum of squares between} / \mbox{degrees of freedom between}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square between}}{\mbox{mean square error}} \end{aligned} $
    where $N$ is the total sample size, and $I$ is the number of groups.
    Note: mean square between is also known as mean square model, and mean square error is also known as mean square residual or mean square within.
$t$ Test for contrast:
  • $t = \dfrac{c}{s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}}$
    Here $c$ is the sample estimate of the population contrast $\Psi$: $c = \sum a_i\bar{y}_i$, with $\bar{y}_i$ the sample mean in group $i$. $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $a_i$ is the contrast coefficient for group $i$, and $n_i$ is the sample size of group $i$.
    Note that if the contrast compares only two group means with each other, this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). In that case the only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
$t$ Test multiple comparisons:
  • $t = \dfrac{\bar{y}_g - \bar{y}_h}{s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}}$
    $\bar{y}_g$ is the sample mean in group $g$, $\bar{y}_h$ is the sample mean in group $h$, $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $n_g$ is the sample size of group $g$, and $n_h$ is the sample size of group $h$.
    Note that this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). The only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
Pooled standard deviationn.a.n.a.Pooled standard deviation
$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $ --$ \begin{aligned} s_p &= \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2 + \ldots + (n_I - 1) \times s^2_I}{N - I}}\\ &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - I}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $

Here $s^2_i$ is the variance in group $i.$
Sampling distribution of $F$ if H0 were trueSampling distribution of $Q$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $F$ and of $t$ if H0 were true
For main and interaction effects together (model):
  • $F$ distribution with $(I - 1) + (J - 1) + (I - 1) \times (J - 1)$ (df model, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable A:
  • $F$ distribution with $I - 1$ (df A, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For independent variable B:
  • $F$ distribution with $J - 1$ (df B, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
For the interaction term:
  • $F$ distribution with $(I - 1) \times (J - 1)$ (df interaction, numerator) and $N - (I \times J)$ (df error, denominator) degrees of freedom
Here $N$ is the total sample size.
If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.

For small samples, the exact distribution of $Q$ should be used.
Approximately the chi-squared distribution with $J - 1$ degrees of freedomSampling distribution of $F$:
  • $F$ distribution with $I - 1$ (df between, numerator) and $N - I$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - I$ degrees of freedom
Significant?Significant?Significant?Significant?
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$
If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
$F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$ (e.g. .01 < $p$ < .025 when $F$ = 3.91, df between = 4, and df error = 20)

$t$ Test for contrast two sided: $t$ Test for contrast right sided: $t$ Test for contrast left sided:
$t$ Test multiple comparisons two sided:
  • Check if $t$ observed in sample is at least as extreme as critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons right sided
  • Check if $t$ observed in sample is equal to or larger than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons left sided
  • Check if $t$ observed in sample is equal to or smaller than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
n.a.n.a.n.a.$C\%$ confidence interval for $\Psi$, for $\mu_g - \mu_h$, and for $\mu_i$
---Confidence interval for $\Psi$ (contrast):
  • $c \pm t^* \times s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}$
    where the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for $\mu_g - \mu_h$ (multiple comparisons):
  • $(\bar{y}_g - \bar{y}_h) \pm t^{**} \times s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}$
    where $t^{**}$ depends upon $C$, degrees of freedom ($N - I$), and the multiple comparison procedure. If you do not want to apply a multiple comparison procedure, $t^{**} = t^* = $ the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$. Note that $n_g$ is the sample size of group $g$, $n_h$ is the sample size of group $h$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for single population mean $\mu_i$:
  • $\bar{y}_i \pm t^* \times \dfrac{s_p}{\sqrt{n_i}}$
    where $\bar{y}_i$ is the sample mean in group $i$, $n_i$ is the sample size of group $i$, and the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
Effect sizen.a.n.a.Effect size
  • Proportion variance explained $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
    $$ \begin{align} R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}} \end{align} $$ $R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\eta^2$:
    Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
    $$ \begin{align} \eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\ \\ \eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\ \\ \eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}} \end{align} $$ $\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to:
    $$ \begin{align} \omega^2_A &= \dfrac{\mbox{sum of squares A} - \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_B &= \dfrac{\mbox{sum of squares B} - \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \\ \omega^2_{int} &= \dfrac{\mbox{sum of squares int} - \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\ \end{align} $$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2$. Only for balanced designs (equal sample sizes).

  • Proportion variance explained $\eta^2_{partial}$: $$ \begin{align} \eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\ \\ \eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}} \end{align} $$
--
  • Proportion variance explained $\eta^2$ and $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variable: $$ \begin{align} \eta^2 = R^2 &= \dfrac{\mbox{sum of squares between}}{\mbox{sum of squares total}} \end{align} $$ Only in one way ANOVA $\eta^2 = R^2.$ $\eta^2$ (and $R^2$) is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to: $$\omega^2 = \frac{\mbox{sum of squares between} - \mbox{df between} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}$$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2.$

  • Cohen's $d$:
    Standardized difference between the mean in group $g$ and in group $h$: $$d_{g,h} = \frac{\bar{y}_g - \bar{y}_h}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ two sample means are removed from each other.
ANOVA tablen.a.n.a.ANOVA table
two way ANOVA table
--
ANOVA table

Click the link for a step by step explanation of how to compute the sum of squares.
Equivalent ton.a.n.a.Equivalent to
OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables.--OLS regression with one categorical independent variable transformed into $I - 1$ code variables:
  • $F$ test ANOVA is equivalent to $F$ test regression model
  • $t$ test for contrast $i$ is equivalent to $t$ test for regression coefficient $\beta_i$ (specific contrast tested depends on how the code variables are defined)
Example contextExample contextExample contextExample context
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)?Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?Is the average mental health score different between people from a low, moderate, and high economic class?
SPSSSPSSSPSSSPSS
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select the Friedman test
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
  • Put your categorical variable in the box below Test Variable List
  • Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
Analyze > Compare Means > One-Way ANOVA...
  • Put your dependent (quantitative) variable in the box below Dependent List and your independent (grouping) variable in the box below Factor
or
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factor(s)
JamoviJamoviJamoviJamovi
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
  • Put your categorical variable in the box below Variable
  • Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factors
Practice questionsPractice questionsPractice questionsPractice questions