Two way ANOVA - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two way ANOVA | Friedman test | Goodness of fit test | $z$ test for the difference between two proportions | Marginal Homogeneity test / Stuart-Maxwell test |
|
---|---|---|---|---|---|
Independent/grouping variables | Independent/grouping variable | Independent variable | Independent/grouping variable | Independent variable | |
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$) | One within subject factor ($\geq 2$ related groups) | None | One categorical with 2 independent groups | 2 paired groups | |
Dependent variable | Dependent variable | Dependent variable | Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One of ordinal level | One categorical with $J$ independent groups ($J \geqslant 2$) | One categorical with 2 independent groups | One categorical with $J$ independent groups ($J \geqslant 2$) | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
ANOVA $F$ tests:
| H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. |
| H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. | H0: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.
Here $\pi_j$ is the population proportion in category $j.$ | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
ANOVA $F$ tests:
| H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups |
| H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ | H1: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group. | |
Assumptions | Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | Test statistic | |
For main and interaction effects together (model):
| $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells. | $z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand. | |
Pooled standard deviation | n.a. | n.a. | n.a. | n.a. | |
$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $ | - | - | - | - | |
Sampling distribution of $F$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of the test statistic if H0 were true | |
For main and interaction effects together (model):
| If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | Approximately the chi-squared distribution with $J - 1$ degrees of freedom | Approximately the standard normal distribution | Approximately the chi-squared distribution with $J - 1$ degrees of freedom | |
Significant? | Significant? | Significant? | Significant? | Significant? | |
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
|
| Two sided:
| If we denote the test statistic as $X^2$:
| |
n.a. | n.a. | n.a. | Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | n.a. | |
- | - | - | Regular (large sample):
| - | |
Effect size | n.a. | n.a. | n.a. | n.a. | |
| - | - | - | - | |
ANOVA table | n.a. | n.a. | n.a. | n.a. | |
![]() | - | - | - | - | |
Equivalent to | n.a. | n.a. | Equivalent to | n.a. | |
OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables. | - | - | When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. | - | |
Example context | Example context | Example context | Example context | Example context | |
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$? | Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best? | |
SPSS | SPSS | SPSS | SPSS | SPSS | |
Analyze > General Linear Model > Univariate...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
| SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | Jamovi | Jamovi | n.a. | |
ANOVA > ANOVA
| ANOVA > Repeated Measures ANOVA - Friedman
| Frequencies > N Outcomes - $\chi^2$ Goodness of fit
| Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| - | |
Practice questions | Practice questions | Practice questions | Practice questions | Practice questions | |