Two way ANOVA - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two way ANOVA | Friedman test | One sample $z$ test for the mean |
You cannot compare more than 3 methods |
---|---|---|---|
Independent/grouping variables | Independent/grouping variable | Independent variable | |
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$) | One within subject factor ($\geq 2$ related groups) | None | |
Dependent variable | Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One of ordinal level | One quantitative of interval or ratio level | |
Null hypothesis | Null hypothesis | Null hypothesis | |
ANOVA $F$ tests:
| H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
ANOVA $F$ tests:
| H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | |
Assumptions | Assumptions | Assumptions | |
|
|
| |
Test statistic | Test statistic | Test statistic | |
For main and interaction effects together (model):
| $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$. | |
Pooled standard deviation | n.a. | n.a. | |
$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $ | - | - | |
Sampling distribution of $F$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $z$ if H0 were true | |
For main and interaction effects together (model):
| If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | Standard normal distribution | |
Significant? | Significant? | Significant? | |
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| Two sided:
| |
n.a. | n.a. | $C\%$ confidence interval for $\mu$ | |
- | - | $\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test. | |
Effect size | n.a. | Effect size | |
| - | Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | |
n.a. | n.a. | Visual representation | |
- | - | ||
ANOVA table | n.a. | n.a. | |
- | - | ||
Equivalent to | n.a. | n.a. | |
OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables. | - | - | |
Example context | Example context | Example context | |
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$ | |
SPSS | SPSS | n.a. | |
Analyze > General Linear Model > Univariate...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| - | |
Jamovi | Jamovi | n.a. | |
ANOVA > ANOVA
| ANOVA > Repeated Measures ANOVA - Friedman
| - | |
Practice questions | Practice questions | Practice questions | |