Two way ANOVA - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two way ANOVA | Friedman test | Two sample $t$ test - equal variances not assumed | Chi-squared test for the relationship between two categorical variables | Spearman's rho |
|
---|---|---|---|---|---|
Independent/grouping variables | Independent/grouping variable | Independent/grouping variable | Independent /column variable | Variable 1 | |
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$) | One within subject factor ($\geq 2$ related groups) | One categorical with 2 independent groups | One categorical with $I$ independent groups ($I \geqslant 2$) | One of ordinal level | |
Dependent variable | Dependent variable | Dependent variable | Dependent /row variable | Variable 2 | |
One quantitative of interval or ratio level | One of ordinal level | One quantitative of interval or ratio level | One categorical with $J$ independent groups ($J \geqslant 2$) | One of ordinal level | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
ANOVA $F$ tests:
| H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | H0: there is no association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H0: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H0: there is no monotonic relationship between the two variables in the population. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
ANOVA $F$ tests:
| H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | H1: there is an association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H1 two sided: $\rho_s \neq 0$ H1 right sided: $\rho_s > 0$ H1 left sided: $\rho_s < 0$ | |
Assumptions | Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | Test statistic | |
For main and interaction effects together (model):
| $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells. | $t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores. | |
Pooled standard deviation | n.a. | n.a. | n.a. | n.a. | |
$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $ | - | - | - | - | |
Sampling distribution of $F$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $t$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
For main and interaction effects together (model):
| If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$ - 1 and $n_2$ - 1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations. | Approximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom | Approximately the $t$ distribution with $N - 2$ degrees of freedom | |
Significant? | Significant? | Significant? | Significant? | Significant? | |
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| Two sided:
|
| Two sided:
| |
n.a. | n.a. | Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$ | n.a. | n.a. | |
- | - | $(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | - | - | |
Effect size | n.a. | n.a. | n.a. | n.a. | |
| - | - | - | - | |
n.a. | n.a. | Visual representation | n.a. | n.a. | |
- | - | ![]() | - | - | |
ANOVA table | n.a. | n.a. | n.a. | n.a. | |
![]() | - | - | - | - | |
Equivalent to | n.a. | n.a. | n.a. | n.a. | |
OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables. | - | - | - | - | |
Example context | Example context | Example context | Example context | Example context | |
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is the average mental health score different between men and women? | Is there an association between economic class and gender? Is the distribution of economic class different between men and women? | Is there a monotonic relationship between physical health and mental health? | |
SPSS | SPSS | SPSS | SPSS | SPSS | |
Analyze > General Linear Model > Univariate...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Compare Means > Independent-Samples T Test...
| Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Correlate > Bivariate...
| |
Jamovi | Jamovi | Jamovi | Jamovi | Jamovi | |
ANOVA > ANOVA
| ANOVA > Repeated Measures ANOVA - Friedman
| T-Tests > Independent Samples T-Test
| Frequencies > Independent Samples - $\chi^2$ test of association
| Regression > Correlation Matrix
| |
Practice questions | Practice questions | Practice questions | Practice questions | Practice questions | |