Two way ANOVA  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two way ANOVA  Sign test  Two sample $z$ test  Chisquared test for the relationship between two categorical variables  One sample $t$ test for the mean 


Independent/grouping variables  Independent variable  Independent/grouping variable  Independent /column variable  Independent variable  
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)  2 paired groups  One categorical with 2 independent groups  One categorical with $I$ independent groups ($I \geqslant 2$)  None  
Dependent variable  Dependent variable  Dependent variable  Dependent /row variable  Dependent variable  
One quantitative of interval or ratio level  One of ordinal level  One quantitative of interval or ratio level  One categorical with $J$ independent groups ($J \geqslant 2$)  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
ANOVA $F$ tests:

 H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: there is no association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
 H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
ANOVA $F$ tests:

 H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1}: there is an association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
 H_{1} two sided: $\mu \neq \mu_0$ H_{1} right sided: $\mu > \mu_0$ H_{1} left sided: $\mu < \mu_0$  
Assumptions  Assumptions  Assumptions  Assumptions  Assumptions  




 
Test statistic  Test statistic  Test statistic  Test statistic  Test statistic  
For main and interaction effects together (model):
 $W = $ number of difference scores that is larger than 0  $z = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.  $t = \dfrac{\bar{y}  \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.  
Pooled standard deviation  n.a.  n.a.  n.a.  n.a.  
$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score}  \mbox{its group mean})^2}{N  (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $          
Sampling distribution of $F$ if H_{0} were true  Sampling distribution of $W$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
For main and interaction effects together (model):
 The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1P)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.  Standard normal distribution  Approximately the chisquared distribution with $(I  1) \times (J  1)$ degrees of freedom  $t$ distribution with $N  1$ degrees of freedom  
Significant?  Significant?  Significant?  Significant?  Significant?  
 If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 Two sided:

 Two sided:
 
n.a.  n.a.  $C\%$ confidence interval for $\mu_1  \mu_2$  n.a.  $C\%$ confidence interval for $\mu$  
    $(\bar{y}_1  \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.    $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N1}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test.  
Effect size  n.a.  n.a.  n.a.  Effect size  
       Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y}  \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$  
n.a.  n.a.  Visual representation  n.a.  Visual representation  
      
ANOVA table  n.a.  n.a.  n.a.  n.a.  
        
Equivalent to  Equivalent to  n.a.  n.a.  n.a.  
OLS regression with two categorical independent variables and the interaction term, transformed into $(I  1)$ + $(J  1)$ + $(I  1) \times (J  1)$ code variables. 
Two sided sign test is equivalent to
       
Example context  Example context  Example context  Example context  Example context  
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?  Do people tend to score higher on mental health after a mindfulness course?  Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women.  Is there an association between economic class and gender? Is the distribution of economic class different between men and women?  Is the average mental health score of office workers different from $\mu_0 = 50$?  
SPSS  SPSS  n.a.  SPSS  SPSS  
Analyze > General Linear Model > Univariate...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
   Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Compare Means > OneSample T Test...
 
Jamovi  Jamovi  n.a.  Jamovi  Jamovi  
ANOVA > ANOVA
 Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
   Frequencies > Independent Samples  $\chi^2$ test of association
 TTests > One Sample TTest
 
Practice questions  Practice questions  Practice questions  Practice questions  Practice questions  