This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two way ANOVA
Chisquared test for the relationship between two categorical variables
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$)
One categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variable
Dependent /row variable
One quantitative of interval or ratio level
One categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesis
Null hypothesis
ANOVA $F$ tests:
H_{0} for main and interaction effects together (model): no main effects and interaction effect
H_{0} for independent variable A: no main effect for A
H_{0} for independent variable B: no main effect for B
H_{0} for the interaction term: no interaction effect between A and B
Like in one way ANOVA, we can also perform $t$ tests for specific contrasts and multiple comparisons. This is more advanced stuff.
H_{0}: there is no association between the row and column variable
More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
H_{0}: the distribution of the dependent variable is the same in each of the $I$ populations
If there is one random sample of size $N$ from the total population:
H_{0}: the row and column variables are independent
Alternative hypothesis
Alternative hypothesis
ANOVA $F$ tests:
H_{1} for main and interaction effects together (model): there is a main effect for A, and/or for B, and/or an interaction effect
H_{1} for independent variable A: there is a main effect for A
H_{1} for independent variable B: there is a main effect for B
H_{1} for the interaction term: there is an interaction effect between A and B
H_{1}: there is an association between the row and column variable
More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
H_{1}: the distribution of the dependent variable is not the same in all of the $I$ populations
If there is one random sample of size $N$ from the total population:
H_{1}: the row and column variables are dependent
Assumptions
Assumptions
Within each of the $I \times J$ populations, the scores on the dependent variable are normally distributed
The standard deviation of the scores on the dependent variable is the same in each of the $I \times J$ populations
For each of the $I \times J$ groups, the sample is an independent and simple random sample from the population defined by that group. That is, within and between groups, observations are independent of one another
Equal sample sizes for each group make the interpretation of the ANOVA output easier (unequal sample sizes result in overlap in the sum of squares; this is advanced stuff)
Sample size is large enough for $X^2$ to be approximately chisquared distributed under the null hypothesis. Rule of thumb:
2 $\times$ 2 table: all four expected cell counts are 5 or more
Larger than 2 $\times$ 2 tables: average of the expected cell counts is 5 or more, smallest expected cell count is 1 or more
There are $I$ independent simple random samples from each of $I$ populations defined by the independent variable, or there is one simple random sample from the total population
Test statistic
Test statistic
For main and interaction effects together (model):
Note: mean square error is also known as mean square residual or mean square within.
$X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells.
Pooled standard deviation
n.a.
$
\begin{aligned}
s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score}  \mbox{its group mean})^2}{N  (I \times J)}}\\
&= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\
&= \sqrt{\mbox{mean square error}}
\end{aligned}
$
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Effect size
n.a.
Proportion variance explained $R^2$:
Proportion variance of the dependent variable $y$ explained by the independent variables and the interaction effect together:
$$
\begin{align}
R^2 &= \dfrac{\mbox{sum of squares model}}{\mbox{sum of squares total}}
\end{align}
$$
$R^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\eta^2$:
Proportion variance of the dependent variable $y$ explained by an independent variable or interaction effect:
$$
\begin{align}
\eta^2_A &= \dfrac{\mbox{sum of squares A}}{\mbox{sum of squares total}}\\
\\
\eta^2_B &= \dfrac{\mbox{sum of squares B}}{\mbox{sum of squares total}}\\
\\
\eta^2_{int} &= \dfrac{\mbox{sum of squares int}}{\mbox{sum of squares total}}
\end{align}
$$
$\eta^2$ is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.
Proportion variance explained $\omega^2$:
Corrects for the positive bias in $\eta^2$ and is equal to:
$$
\begin{align}
\omega^2_A &= \dfrac{\mbox{sum of squares A}  \mbox{degrees of freedom A} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_B &= \dfrac{\mbox{sum of squares B}  \mbox{degrees of freedom B} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\\
\omega^2_{int} &= \dfrac{\mbox{sum of squares int}  \mbox{degrees of freedom int} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}\\
\end{align}
$$
$\omega^2$ is a better estimate of the explained variance in the population than
$\eta^2$. Only for balanced designs (equal sample sizes).
Proportion variance explained $\eta^2_{partial}$:
$$
\begin{align}
\eta^2_{partial\,A} &= \frac{\mbox{sum of squares A}}{\mbox{sum of squares A} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,B} &= \frac{\mbox{sum of squares B}}{\mbox{sum of squares B} + \mbox{sum of squares error}}\\
\\
\eta^2_{partial\,int} &= \frac{\mbox{sum of squares int}}{\mbox{sum of squares int} + \mbox{sum of squares error}}
\end{align}
$$

ANOVA table
n.a.

Equivalent to
n.a.
OLS regression with two categorical independent variables and the interaction term, transformed into $(I  1)$ + $(J  1)$ + $(I  1) \times (J  1)$ code variables.

Example context
Example context
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender?
Is there an association between economic class and gender? Is the distribution of economic class different between men and women?
SPSS
SPSS
Analyze > General Linear Model > Univariate...
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factor(s)
Analyze > Descriptive Statistics > Crosstabs...
Put one of your two categorical variables in the box below Row(s), and the other categorical variable in the box below Column(s)
Click the Statistics... button, and click on the square in front of Chisquare
Continue and click OK
Jamovi
Jamovi
ANOVA > ANOVA
Put your dependent (quantitative) variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors
Frequencies > Independent Samples  $\chi^2$ test of association
Put one of your two categorical variables in the box below Rows, and the other categorical variable in the box below Columns