Two way ANOVA - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two way ANOVA | Chi-squared test for the relationship between two categorical variables | One sample $z$ test for the mean | Cochran's Q test |
|
---|---|---|---|---|
Independent/grouping variables | Independent /column variable | Independent variable | Independent/grouping variable | |
Two categorical, the first with $I$ independent groups and the second with $J$ independent groups ($I \geqslant 2$, $J \geqslant 2$) | One categorical with $I$ independent groups ($I \geqslant 2$) | None | One within subject factor ($\geq 2$ related groups) | |
Dependent variable | Dependent /row variable | Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One categorical with $J$ independent groups ($J \geqslant 2$) | One quantitative of interval or ratio level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | Null hypothesis | Null hypothesis | |
ANOVA $F$ tests:
| H0: there is no association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | H0: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$ | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
ANOVA $F$ tests:
| H1: there is an association between the row and column variable More precisely, if there are $I$ independent random samples of size $n_i$ from each of $I$ populations, defined by the independent variable:
| H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | H1: not all population proportions are equal | |
Assumptions | Assumptions | Assumptions | Assumptions | |
|
|
|
| |
Test statistic | Test statistic | Test statistic | Test statistic | |
For main and interaction effects together (model):
| $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here for each cell, the expected cell count = $\dfrac{\mbox{row total} \times \mbox{column total}}{\mbox{total sample size}}$, the observed cell count is the observed sample count in that same cell, and the sum is over all $I \times J$ cells. | $z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$. | If a failure is scored as 0 and a success is scored as 1:
$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups. | |
Pooled standard deviation | n.a. | n.a. | n.a. | |
$ \begin{aligned} s_p &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - (I \times J)}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $ | - | - | - | |
Sampling distribution of $F$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $z$ if H0 were true | Sampling distribution of $Q$ if H0 were true | |
For main and interaction effects together (model):
| Approximately the chi-squared distribution with $(I - 1) \times (J - 1)$ degrees of freedom | Standard normal distribution | If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom | |
Significant? | Significant? | Significant? | Significant? | |
|
| Two sided:
| If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| |
n.a. | n.a. | $C\%$ confidence interval for $\mu$ | n.a. | |
- | - | $\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test. | - | |
Effect size | n.a. | Effect size | n.a. | |
| - | Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | - | |
n.a. | n.a. | Visual representation | n.a. | |
- | - | ![]() | - | |
ANOVA table | n.a. | n.a. | n.a. | |
![]() | - | - | - | |
Equivalent to | n.a. | n.a. | Equivalent to | |
OLS regression with two categorical independent variables and the interaction term, transformed into $(I - 1)$ + $(J - 1)$ + $(I - 1) \times (J - 1)$ code variables. | - | - | Friedman test, with a categorical dependent variable consisting of two independent groups. | |
Example context | Example context | Example context | Example context | |
Is the average mental health score different between people from a low, moderate, and high economic class? And is the average mental health score different between men and women? And is there an interaction effect between economic class and gender? | Is there an association between economic class and gender? Is the distribution of economic class different between men and women? | Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$ | Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks? | |
SPSS | SPSS | n.a. | SPSS | |
Analyze > General Linear Model > Univariate...
| Analyze > Descriptive Statistics > Crosstabs...
| - | Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| |
Jamovi | Jamovi | n.a. | Jamovi | |
ANOVA > ANOVA
| Frequencies > Independent Samples - $\chi^2$ test of association
| - | Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | Practice questions | Practice questions | Practice questions | |