Mann-Whitney-Wilcoxon test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Mann-Whitney-Wilcoxon test | Friedman test | One sample $t$ test for the mean |
|
---|---|---|---|
Independent/grouping variable | Independent/grouping variable | Independent variable | |
One categorical with 2 independent groups | One within subject factor ($\geq 2$ related groups) | None | |
Dependent variable | Dependent variable | Dependent variable | |
One of ordinal level | One of ordinal level | One quantitative of interval or ratio level | |
Null hypothesis | Null hypothesis | Null hypothesis | |
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:
| H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:
| H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | |
Assumptions | Assumptions | Assumptions | |
|
|
| |
Test statistic | Test statistic | Test statistic | |
Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$:
Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2. | $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | $t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | |
Sampling distribution of $W$ and of $U$ if H0 were true | Sampling distribution of $Q$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
Sampling distribution of $W$:
Sampling distribution of $U$: For small samples, the exact distribution of $W$ or $U$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated. | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | $t$ distribution with $N - 1$ degrees of freedom | |
Significant? | Significant? | Significant? | |
For large samples, the table for standard normal probabilities can be used: Two sided:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| Two sided:
| |
n.a. | n.a. | $C\%$ confidence interval for $\mu$ | |
- | - | $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | |
n.a. | n.a. | Effect size | |
- | - | Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | |
n.a. | n.a. | Visual representation | |
- | - | ![]() | |
Equivalent to | n.a. | n.a. | |
If there are no ties in the data, the two sided Mann-Whitney-Wilcoxon test is equivalent to the Kruskal-Wallis test with an independent variable with 2 levels ($I$ = 2). | - | - | |
Example context | Example context | Example context | |
Do men tend to score higher on social economic status than women? | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | Is the average mental health score of office workers different from $\mu_0 = 50$? | |
SPSS | SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| Analyze > Compare Means > One-Sample T Test...
| |
Jamovi | Jamovi | Jamovi | |
T-Tests > Independent Samples T-Test
| ANOVA > Repeated Measures ANOVA - Friedman
| T-Tests > One Sample T-Test
| |
Practice questions | Practice questions | Practice questions | |