KruskalWallis test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
KruskalWallis test  Two sample $t$ test  equal variances assumed 


Independent/grouping variable  Independent/grouping variable  
One categorical with $I$ independent groups ($I \geqslant 2$)  One categorical with 2 independent groups  
Dependent variable  Dependent variable  
One of ordinal level  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  
Alternative hypothesis  Alternative hypothesis  
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i}  3(N + 1)$  $t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  
n.a.  Pooled standard deviation  
  $s_p = \sqrt{\dfrac{(n_1  1) \times s^2_1 + (n_2  1) \times s^2_2}{n_1 + n_2  2}}$  
Sampling distribution of $H$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
For large samples, approximately the chisquared distribution with $I  1$ degrees of freedom. For small samples, the exact distribution of $H$ should be used.  $t$ distribution with $n_1 + n_2  2$ degrees of freedom  
Significant?  Significant?  
For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
 Two sided:
 
n.a.  $C\%$ confidence interval for $\mu_1  \mu_2$  
  $(\bar{y}_1  \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2  2}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  
n.a.  Effect size  
  Cohen's $d$: Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1  \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.  
n.a.  Visual representation  
  
n.a.  Equivalent to  
  One way ANOVA with an independent variable with 2 levels ($I$ = 2):
 
Example context  Example context  
Do people from different religions tend to score differently on social economic status?  Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.  
SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
 Analyze > Compare Means > IndependentSamples T Test...
 
Jamovi  Jamovi  
ANOVA > One Way ANOVA  KruskalWallis
 TTests > Independent Samples TTest
 
Practice questions  Practice questions  