This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Spearman's rho
KruskalWallis test
$z$ test for a single proportion
You cannot compare more than 3 methods
Variable 1
Independent/grouping variable
Independent variable
One of ordinal level
One categorical with $I$ independent groups ($I \geqslant 2$)
None
Variable 2
Dependent variable
Dependent variable
One of ordinal level
One of ordinal level
One categorical with 2 independent groups
Null hypothesis
Null hypothesis
Null hypothesis
H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level.
In words, the null hypothesis would be:
H_{0}: there is no monotonic relationship between the two variables in the population.
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
H_{0}: the population medians for the $I$ groups are equal
Else:
Formulation 1:
H_{0}: the population scores in any of the $I$ groups are not systematically higher or lower than the population scores in any of the other groups
Formulation 2:
H_{0}:
P(an observation from population $g$ exceeds an observation from population $h$) = P(an observation from population $h$ exceeds an observation from population $g$), for each pair of groups.
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H_{0}: $\pi = \pi_0$
Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
H_{1} two sided: $\rho_s \neq 0$
H_{1} right sided: $\rho_s > 0$
H_{1} left sided: $\rho_s < 0$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
H_{1}: not all of the population medians for the $I$ groups are equal
Else:
Formulation 1:
H_{1}:
the poplation scores in some groups are systematically higher or lower than the population scores in other groups
Formulation 2:
H_{1}:
for at least one pair of groups:
P(an observation from population $g$ exceeds an observation from population $h$) $\neq$ P(an observation from population $h$ exceeds an observation from population $g$)
H_{1} two sided: $\pi \neq \pi_0$
H_{1} right sided: $\pi > \pi_0$
H_{1} left sided: $\pi < \pi_0$
Assumptions
Assumptions
Assumptions
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
Significance test: $N \times \pi_0$ and $N \times (1  \pi_0)$ are each larger than 10
Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
Sample is a simple random sample from the population. That is, observations are independent of one another
$t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $
Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
Here $N$ is the total sample size, $R_i$ is the sum of ranks in group $i$, and $n_i$ is the sample size of group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N (N + 1)} \times \sum \frac{R^2_i}{n_i}$ and then subtract $3(N + 1)$.
Note: if ties are present in the data, the formula for $H$ is more complicated.
$z = \dfrac{p  \pi_0}{\sqrt{\dfrac{\pi_0(1  \pi_0)}{N}}}$
Here $p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided:
Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
n.a.
n.a.
Approximate $C\%$ confidence interval for $\pi$


Regular (large sample):
$p \pm z^* \times \sqrt{\dfrac{p(1  p)}{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
$p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1  p_{plus})}{N + 4}}$
where $p_{plus} = \dfrac{X + 2}{N + 4}$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
n.a.
n.a.
Equivalent to


When testing two sided: goodness of fit test, with a categorical variable with 2 levels.
When $N$ is large, the $p$ value from the $z$ test for a single proportion approaches the $p$ value from the binomial test for a single proportion. The $z$ test for a single proportion is just a large sample approximation of the binomial test for a single proportion.
Example context
Example context
Example context
Is there a monotonic relationship between physical health and mental health?
Do people from different religions tend to score differently on social economic status?
Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? Use the normal approximation for the sampling distribution of the test statistic.
Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
Click on the Define Range... button. If you can't click on it, first click on the grouping variable so its background turns yellow
Fill in the smallest value you have used to indicate your groups in the box next to Minimum, and the largest value you have used to indicate your groups in the box next to Maximum
Put your dichotomous variable in the box below Test Variable List
Fill in the value for $\pi_0$ in the box next to Test Proportion
If computation time allows, SPSS will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
Jamovi
Jamovi
Jamovi
Regression > Correlation Matrix
Put your two variables in the white box at the right
Under Correlation Coefficients, select Spearman
Under Hypothesis, select your alternative hypothesis
ANOVA > One Way ANOVA  KruskalWallis
Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
Frequencies > 2 Outcomes  Binomial test
Put your dichotomous variable in the white box at the right
Fill in the value for $\pi_0$ in the box next to Test value
Under Hypothesis, select your alternative hypothesis
Jamovi will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution