Spearman's rho - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Spearman's rho | Goodness of fit test |
|
---|---|---|
Variable 1 | Independent variable | |
One of ordinal level | None | |
Variable 2 | Dependent variable | |
One of ordinal level | One categorical with $J$ independent groups ($J \geqslant 2$) | |
Null hypothesis | Null hypothesis | |
H0: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H0: there is no monotonic relationship between the two variables in the population. |
| |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\rho_s \neq 0$ H1 right sided: $\rho_s > 0$ H1 left sided: $\rho_s < 0$ |
| |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores. | $X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells. | |
Sampling distribution of $t$ if H0 were true | Sampling distribution of $X^2$ if H0 were true | |
Approximately the $t$ distribution with $N - 2$ degrees of freedom | Approximately the chi-squared distribution with $J - 1$ degrees of freedom | |
Significant? | Significant? | |
Two sided:
|
| |
Example context | Example context | |
Is there a monotonic relationship between physical health and mental health? | Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$? | |
SPSS | SPSS | |
Analyze > Correlate > Bivariate...
| Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
| |
Jamovi | Jamovi | |
Regression > Correlation Matrix
| Frequencies > N Outcomes - $\chi^2$ Goodness of fit
| |
Practice questions | Practice questions | |