Spearman's rho  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Spearman's rho  Sign test 


Variable 1  Independent variable  
One of ordinal level  2 paired groups  
Variable 2  Dependent variable  
One of ordinal level  One of ordinal level  
Null hypothesis  Null hypothesis  
H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H_{0}: there is no monotonic relationship between the two variables in the population. 
 
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\rho_s \neq 0$ H_{1} right sided: $\rho_s > 0$ H_{1} left sided: $\rho_s < 0$ 
 
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  $W = $ number of difference scores that is larger than 0  
Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $W$ if H_{0} were true  
Approximately the $t$ distribution with $N  2$ degrees of freedom  The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1P)} = \sqrt{n \times 0.5(1  0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W  n \times 0.5}{\sqrt{n \times 0.5(1  0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.  
Significant?  Significant?  
Two sided:
 If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
 
n.a.  Equivalent to  
 
Two sided sign test is equivalent to
 
Example context  Example context  
Is there a monotonic relationship between physical health and mental health?  Do people tend to score higher on mental health after a mindfulness course?  
SPSS  SPSS  
Analyze > Correlate > Bivariate...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  
Regression > Correlation Matrix
 Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
 
Practice questions  Practice questions  