z test for the difference between two proportions - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

$z$ test for the difference between two proportions
$z$ test for a single proportion
One way ANOVA
You cannot compare more than 3 methods
Independent/grouping variableIndependent variableIndependent/grouping variable
One categorical with 2 independent groupsNoneOne categorical with $I$ independent groups ($I \geqslant 2$)
Dependent variableDependent variableDependent variable
One categorical with 2 independent groupsOne categorical with 2 independent groupsOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
H0: $\pi_1 = \pi_2$

Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
ANOVA $F$ test:
  • H0: $\mu_1 = \mu_2 = \ldots = \mu_I$
    $\mu_1$ is the population mean for group 1; $\mu_2$ is the population mean for group 2; $\mu_I$ is the population mean for group $I$
$t$ Test for contrast:
  • H0: $\Psi = 0$
    $\Psi$ is the population contrast, defined as $\Psi = \sum a_i\mu_i$. Here $\mu_i$ is the population mean for group $i$ and $a_i$ is the coefficient for $\mu_i$. The coefficients $a_i$ sum to 0.
$t$ Test multiple comparisons:
  • H0: $\mu_g = \mu_h$
    $\mu_g$ is the population mean for group $g$; $\mu_h$ is the population mean for group $h$
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\pi_1 \neq \pi_2$
H1 right sided: $\pi_1 > \pi_2$
H1 left sided: $\pi_1 < \pi_2$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
ANOVA $F$ test:
  • H1: not all population means are equal
$t$ Test for contrast:
  • H1 two sided: $\Psi \neq 0$
  • H1 right sided: $\Psi > 0$
  • H1 left sided: $\Psi < 0$
$t$ Test multiple comparisons:
  • H1 - usually two sided: $\mu_g \neq \mu_h$
AssumptionsAssumptionsAssumptions
  • Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
    • Significance test: number of successes and number of failures are each 5 or more in both sample groups
    • Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
    • Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
    • Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
    • Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
    • Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in each of the populations: $\sigma_1 = \sigma_2 = \ldots = \sigma_I$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statistic
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2.
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$
$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
Here $p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.
ANOVA $F$ test:
  • $\begin{aligned}[t] F &= \dfrac{\sum\nolimits_{subjects} (\mbox{subject's group mean} - \mbox{overall mean})^2 / (I - 1)}{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2 / (N - I)}\\ &= \dfrac{\mbox{sum of squares between} / \mbox{degrees of freedom between}}{\mbox{sum of squares error} / \mbox{degrees of freedom error}}\\ &= \dfrac{\mbox{mean square between}}{\mbox{mean square error}} \end{aligned} $
    where $N$ is the total sample size, and $I$ is the number of groups.
    Note: mean square between is also known as mean square model, and mean square error is also known as mean square residual or mean square within.
$t$ Test for contrast:
  • $t = \dfrac{c}{s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}}$
    Here $c$ is the sample estimate of the population contrast $\Psi$: $c = \sum a_i\bar{y}_i$, with $\bar{y}_i$ the sample mean in group $i$. $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $a_i$ is the contrast coefficient for group $i$, and $n_i$ is the sample size of group $i$.
    Note that if the contrast compares only two group means with each other, this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). In that case the only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
$t$ Test multiple comparisons:
  • $t = \dfrac{\bar{y}_g - \bar{y}_h}{s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}}$
    $\bar{y}_g$ is the sample mean in group $g$, $\bar{y}_h$ is the sample mean in group $h$, $s_p$ is the pooled standard deviation based on all the $I$ groups in the ANOVA, $n_g$ is the sample size of group $g$, and $n_h$ is the sample size of group $h$.
    Note that this $t$ statistic is very similar to the two sample $t$ statistic (assuming equal population standard deviations). The only difference is that we now base the pooled standard deviation on all the $I$ groups, which affects the $t$ value if $I \geqslant 3$. It also affects the corresponding degrees of freedom.
n.a.n.a.Pooled standard deviation
--$ \begin{aligned} s_p &= \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2 + \ldots + (n_I - 1) \times s^2_I}{N - I}}\\ &= \sqrt{\dfrac{\sum\nolimits_{subjects} (\mbox{subject's score} - \mbox{its group mean})^2}{N - I}}\\ &= \sqrt{\dfrac{\mbox{sum of squares error}}{\mbox{degrees of freedom error}}}\\ &= \sqrt{\mbox{mean square error}} \end{aligned} $

Here $s^2_i$ is the variance in group $i.$
Sampling distribution of $z$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $F$ and of $t$ if H0 were true
Approximately the standard normal distributionApproximately the standard normal distributionSampling distribution of $F$:
  • $F$ distribution with $I - 1$ (df between, numerator) and $N - I$ (df error, denominator) degrees of freedom
Sampling distribution of $t$:
  • $t$ distribution with $N - I$ degrees of freedom
Significant?Significant?Significant?
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided: $F$ test:
  • Check if $F$ observed in sample is equal to or larger than critical value $F^*$ or
  • Find $p$ value corresponding to observed $F$ and check if it is equal to or smaller than $\alpha$ (e.g. .01 < $p$ < .025 when $F$ = 3.91, df between = 4, and df error = 20)

$t$ Test for contrast two sided: $t$ Test for contrast right sided: $t$ Test for contrast left sided:
$t$ Test multiple comparisons two sided:
  • Check if $t$ observed in sample is at least as extreme as critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons right sided
  • Check if $t$ observed in sample is equal to or larger than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
$t$ Test multiple comparisons left sided
  • Check if $t$ observed in sample is equal to or smaller than critical value $t^{**}$. Adapt $t^{**}$ according to a multiple comparison procedure (e.g., Bonferroni) or
  • Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$. Adapt the $p$ value or $\alpha$ according to a multiple comparison procedure
Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$Approximate $C\%$ confidence interval for $\pi$$C\%$ confidence interval for $\Psi$, for $\mu_g - \mu_h$, and for $\mu_i$
Regular (large sample):
  • $(p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}}$
    where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
  • $(p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}}$
    where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
Regular (large sample):
  • $p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}}$
    where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
  • $p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}}$
    where $p_{plus} = \dfrac{X + 2}{N + 4}$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
Confidence interval for $\Psi$ (contrast):
  • $c \pm t^* \times s_p\sqrt{\sum \dfrac{a^2_i}{n_i}}$
    where the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for $\mu_g - \mu_h$ (multiple comparisons):
  • $(\bar{y}_g - \bar{y}_h) \pm t^{**} \times s_p\sqrt{\dfrac{1}{n_g} + \dfrac{1}{n_h}}$
    where $t^{**}$ depends upon $C$, degrees of freedom ($N - I$), and the multiple comparison procedure. If you do not want to apply a multiple comparison procedure, $t^{**} = t^* = $ the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$. Note that $n_g$ is the sample size of group $g$, $n_h$ is the sample size of group $h$, and $N$ is the total sample size, based on all the $I$ groups.
Confidence interval for single population mean $\mu_i$:
  • $\bar{y}_i \pm t^* \times \dfrac{s_p}{\sqrt{n_i}}$
    where $\bar{y}_i$ is the sample mean in group $i$, $n_i$ is the sample size of group $i$, and the critical value $t^*$ is the value under the $t_{N - I}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). Note that $n_i$ is the sample size of group $i$, and $N$ is the total sample size, based on all the $I$ groups.
n.a.n.a.Effect size
--
  • Proportion variance explained $\eta^2$ and $R^2$:
    Proportion variance of the dependent variable $y$ explained by the independent variable: $$ \begin{align} \eta^2 = R^2 &= \dfrac{\mbox{sum of squares between}}{\mbox{sum of squares total}} \end{align} $$ Only in one way ANOVA $\eta^2 = R^2.$ $\eta^2$ (and $R^2$) is the proportion variance explained in the sample. It is a positively biased estimate of the proportion variance explained in the population.

  • Proportion variance explained $\omega^2$:
    Corrects for the positive bias in $\eta^2$ and is equal to: $$\omega^2 = \frac{\mbox{sum of squares between} - \mbox{df between} \times \mbox{mean square error}}{\mbox{sum of squares total} + \mbox{mean square error}}$$ $\omega^2$ is a better estimate of the explained variance in the population than $\eta^2.$

  • Cohen's $d$:
    Standardized difference between the mean in group $g$ and in group $h$: $$d_{g,h} = \frac{\bar{y}_g - \bar{y}_h}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ two sample means are removed from each other.
n.a.n.a.ANOVA table
--
ANOVA table

Click the link for a step by step explanation of how to compute the sum of squares.
Equivalent toEquivalent toEquivalent to
When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels.
  • When testing two sided: goodness of fit test, with a categorical variable with 2 levels.
  • When $N$ is large, the $p$ value from the $z$ test for a single proportion approaches the $p$ value from the binomial test for a single proportion. The $z$ test for a single proportion is just a large sample approximation of the binomial test for a single proportion.
OLS regression with one categorical independent variable transformed into $I - 1$ code variables:
  • $F$ test ANOVA is equivalent to $F$ test regression model
  • $t$ test for contrast $i$ is equivalent to $t$ test for regression coefficient $\beta_i$ (specific contrast tested depends on how the code variables are defined)
Example contextExample contextExample context
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? Use the normal approximation for the sampling distribution of the test statistic.Is the average mental health score different between people from a low, moderate, and high economic class?
SPSSSPSSSPSS
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Analyze > Descriptive Statistics > Crosstabs...
  • Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
  • Put your dichotomous variable in the box below Test Variable List
  • Fill in the value for $\pi_0$ in the box next to Test Proportion
If computation time allows, SPSS will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
Analyze > Compare Means > One-Way ANOVA...
  • Put your dependent (quantitative) variable in the box below Dependent List and your independent (grouping) variable in the box below Factor
or
Analyze > General Linear Model > Univariate...
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factor(s)
JamoviJamoviJamovi
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Frequencies > Independent Samples - $\chi^2$ test of association
  • Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
Frequencies > 2 Outcomes - Binomial test
  • Put your dichotomous variable in the white box at the right
  • Fill in the value for $\pi_0$ in the box next to Test value
  • Under Hypothesis, select your alternative hypothesis
Jamovi will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
ANOVA > ANOVA
  • Put your dependent (quantitative) variable in the box below Dependent Variable and your independent (grouping) variable in the box below Fixed Factors
Practice questionsPractice questionsPractice questions