# z test for the difference between two proportions - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

$z$ test for the difference between two proportions
$z$ test for a single proportion
Two sample $z$ test
You cannot compare more than 3 methods
Independent/grouping variableIndependent variableIndependent/grouping variable
One categorical with 2 independent groupsNoneOne categorical with 2 independent groups
Dependent variableDependent variableDependent variable
One categorical with 2 independent groupsOne categorical with 2 independent groupsOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesis
H0: $\pi_1 = \pi_2$

Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.
H0: $\pi = \pi_0$

Here $\pi$ is the population proportion of 'successes', and $\pi_0$ is the population proportion of successes according to the null hypothesis.
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\pi_1 \neq \pi_2$
H1 right sided: $\pi_1 > \pi_2$
H1 left sided: $\pi_1 < \pi_2$
H1 two sided: $\pi \neq \pi_0$
H1 right sided: $\pi > \pi_0$
H1 left sided: $\pi < \pi_0$
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
AssumptionsAssumptionsAssumptions
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: number of successes and number of failures are each 5 or more in both sample groups
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
• Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
• Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
• Significance test: $N \times \pi_0$ and $N \times (1 - \pi_0)$ are each larger than 10
• Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures in sample are each 15 or more
• Plus four 90%, 95%, or 99% confidence interval: total sample size is 10 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
If the sample size is too small for $z$ to be approximately normally distributed, the binomial test for a single proportion should be used.
• Within each population, the scores on the dependent variable are normally distributed
• Population standard deviations $\sigma_1$ and $\sigma_2$ are known
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statistic
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2.
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$
$z = \dfrac{p - \pi_0}{\sqrt{\dfrac{\pi_0(1 - \pi_0)}{N}}}$
Here $p$ is the sample proportion of successes: $\dfrac{X}{N}$, $N$ is the sample size, and $\pi_0$ is the population proportion of successes according to the null hypothesis.
$z = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $\sigma^2_1$ is the population variance in population 1, $\sigma^2_2$ is the population variance in population 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}$ is the standard deviation of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $z$ value indicates how many of these standard deviations $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
Sampling distribution of $z$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $z$ if H0 were true
Approximately the standard normal distributionApproximately the standard normal distributionStandard normal distribution
Significant?Significant?Significant?
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$Approximate $C\%$ confidence interval for $\pi$$C\%$ confidence interval for $\mu_1 - \mu_2$
Regular (large sample):
• $(p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
• $(p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}}$
where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
Regular (large sample):
• $p \pm z^* \times \sqrt{\dfrac{p(1 - p)}{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
• $p_{plus} \pm z^* \times \sqrt{\dfrac{p_{plus}(1 - p_{plus})}{N + 4}}$
where $p_{plus} = \dfrac{X + 2}{N + 4}$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
$(\bar{y}_1 - \bar{y}_2) \pm z^* \times \sqrt{\dfrac{\sigma^2_1}{n_1} + \dfrac{\sigma^2_2}{n_2}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
n.a.n.a.Visual representation
--
Equivalent toEquivalent ton.a.
When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels.
• When testing two sided: goodness of fit test, with a categorical variable with 2 levels.
• When $N$ is large, the $p$ value from the $z$ test for a single proportion approaches the $p$ value from the binomial test for a single proportion. The $z$ test for a single proportion is just a large sample approximation of the binomial test for a single proportion.
-
Example contextExample contextExample context
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Is the proportion of smokers amongst office workers different from $\pi_0 = 0.2$? Use the normal approximation for the sampling distribution of the test statistic.Is the average mental health score different between men and women? Assume that in the population, the standard devation of the mental health scores is $\sigma_1 = 2$ amongst men and $\sigma_2 = 2.5$ amongst women.
SPSSSPSSn.a.
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Analyze > Descriptive Statistics > Crosstabs...
• Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
• Click the Statistics... button, and click on the square in front of Chi-square
• Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > Binomial...
• Put your dichotomous variable in the box below Test Variable List
• Fill in the value for $\pi_0$ in the box next to Test Proportion
If computation time allows, SPSS will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
-
JamoviJamovin.a.
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Frequencies > Independent Samples - $\chi^2$ test of association
• Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
Frequencies > 2 Outcomes - Binomial test
• Put your dichotomous variable in the white box at the right
• Fill in the value for $\pi_0$ in the box next to Test value
• Under Hypothesis, select your alternative hypothesis
Jamovi will give you the exact $p$ value based on the binomial distribution, rather than the approximate $p$ value based on the normal distribution
-
Practice questionsPractice questionsPractice questions