z test for the difference between two proportions  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
$z$ test for the difference between two proportions  Two sample $t$ test  equal variances assumed 


Independent/grouping variable  Independent/grouping variable  
One categorical with 2 independent groups  One categorical with 2 independent groups  
Dependent variable  Dependent variable  
One categorical with 2 independent groups  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  
H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.  H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$  $t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  
n.a.  Pooled standard deviation  
  $s_p = \sqrt{\dfrac{(n_1  1) \times s^2_1 + (n_2  1) \times s^2_2}{n_1 + n_2  2}}$  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
Approximately the standard normal distribution  $t$ distribution with $n_1 + n_2  2$ degrees of freedom  
Significant?  Significant?  
Two sided:
 Two sided:
 
Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  $C\%$ confidence interval for $\mu_1  \mu_2$  
Regular (large sample):
 $(\bar{y}_1  \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2  2}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  
n.a.  Effect size  
  Cohen's $d$: Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1  \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.  
n.a.  Visual representation  
  
Equivalent to  Equivalent to  
When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels.  One way ANOVA with an independent variable with 2 levels ($I$ = 2):
 
Example context  Example context  
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.  
SPSS  SPSS  
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Compare Means > IndependentSamples T Test...
 
Jamovi  Jamovi  
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 TTests > Independent Samples TTest
 
Practice questions  Practice questions  