z test for the difference between two proportions  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
$z$ test for the difference between two proportions  Goodness of fit test 


Independent/grouping variable  Independent variable  
One categorical with 2 independent groups  None  
Dependent variable  Dependent variable  
One categorical with 2 independent groups  One categorical with $J$ independent groups ($J \geqslant 2$)  
Null hypothesis  Null hypothesis  
H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. 
 
Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$ 
 
Assumptions  Assumptions  

 
Test statistic  Test statistic  
$z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$  $X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  
Approximately the standard normal distribution  Approximately the chisquared distribution with $J  1$ degrees of freedom  
Significant?  Significant?  
Two sided:

 
Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  n.a.  
Regular (large sample):
   
Equivalent to  n.a.  
When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels.    
Example context  Example context  
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?  
SPSS  SPSS  
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Nonparametric Tests > Legacy Dialogs > Chisquare...
 
Jamovi  Jamovi  
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 Frequencies > N Outcomes  $\chi^2$ Goodness of fit
 
Practice questions  Practice questions  