z test for the difference between two proportions - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
$z$ test for the difference between two proportions | Friedman test |
|
---|---|---|
Independent/grouping variable | Independent/grouping variable | |
One categorical with 2 independent groups | One within subject factor ($\geq 2$ related groups) | |
Dependent variable | Dependent variable | |
One categorical with 2 independent groups | One of ordinal level | |
Null hypothesis | Null hypothesis | |
H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. | H0: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher. | |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ | H1: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups | |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i - 3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects - so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated. | |
Sampling distribution of $z$ if H0 were true | Sampling distribution of $Q$ if H0 were true | |
Approximately the standard normal distribution | If the number of blocks $N$ is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used. | |
Significant? | Significant? | |
Two sided:
| If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
| |
Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | n.a. | |
Regular (large sample):
| - | |
Equivalent to | n.a. | |
When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. | - | |
Example context | Example context | |
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | Is there a difference in depression level between measurement point 1 (pre-intervention), measurement point 2 (1 week post-intervention), and measurement point 3 (6 weeks post-intervention)? | |
SPSS | SPSS | |
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
| |
Jamovi | Jamovi | |
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | Practice questions | |