z test for the difference between two proportions - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
$z$ test for the difference between two proportions | Sign test |
|
---|---|---|
Independent/grouping variable | Independent variable | |
One categorical with 2 independent groups | 2 paired groups | |
Dependent variable | Dependent variable | |
One categorical with 2 independent groups | One of ordinal level | |
Null hypothesis | Null hypothesis | |
H0: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2. |
| |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\pi_1 \neq \pi_2$ H1 right sided: $\pi_1 > \pi_2$ H1 left sided: $\pi_1 < \pi_2$ |
| |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$ | $W = $ number of difference scores that is larger than 0 | |
Sampling distribution of $z$ if H0 were true | Sampling distribution of $W$ if H0 were true | |
Approximately the standard normal distribution | The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.
If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true. | |
Significant? | Significant? | |
Two sided:
| If $n$ is small, the table for the binomial distribution should be used: Two sided:
If $n$ is large, the table for standard normal probabilities can be used: Two sided:
| |
Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$ | n.a. | |
Regular (large sample):
| - | |
Equivalent to | Equivalent to | |
When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels. |
Two sided sign test is equivalent to
| |
Example context | Example context | |
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic. | Do people tend to score higher on mental health after a mindfulness course? | |
SPSS | SPSS | |
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
| Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
| |
Jamovi | Jamovi | |
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples - $\chi^2$ test of association
| Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:
ANOVA > Repeated Measures ANOVA - Friedman
| |
Practice questions | Practice questions | |