z test for the difference between two proportions  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
$z$ test for the difference between two proportions  McNemar's test  Spearman's rho 
You cannot compare more than 3 methods 

Independent/grouping variable  Independent variable  Variable 1  
One categorical with 2 independent groups  2 paired groups  One of ordinal level  
Dependent variable  Dependent variable  Variable 2  
One categorical with 2 independent groups  One categorical with 2 independent groups  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.  Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
Other formulations of the null hypothesis are:
 H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H_{0}: there is no monotonic relationship between the two variables in the population.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  The alternative hypothesis H_{1} is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0. Other formulations of the alternative hypothesis are:
 H_{1} two sided: $\rho_s \neq 0$ H_{1} right sided: $\rho_s > 0$ H_{1} left sided: $\rho_s < 0$  
Assumptions  Assumptions  Assumptions  


 
Test statistic  Test statistic  Test statistic  
$z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$  $X^2 = \dfrac{(b  c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.  $t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  
Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
Approximately the standard normal distribution  If $b + c$ is large enough (say, > 20), approximately the chisquared distribution with 1 degree of freedom. If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.  Approximately the $t$ distribution with $N  2$ degrees of freedom  
Significant?  Significant?  Significant?  
Two sided:
 For test statistic $X^2$:
 Two sided:
 
Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  n.a.  n.a.  
Regular (large sample):
     
Equivalent to  Equivalent to  n.a.  
When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels. 
   
Example context  Example context  Example context  
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?  Is there a monotonic relationship between physical health and mental health?  
SPSS  SPSS  SPSS  
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 Analyze > Correlate > Bivariate...
 
Jamovi  Jamovi  Jamovi  
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 Frequencies > Paired Samples  McNemar test
 Regression > Correlation Matrix
 
Practice questions  Practice questions  Practice questions  