z test for the difference between two proportions - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

$z$ test for the difference between two proportions
McNemar's test
Cochran's Q test
You cannot compare more than 3 methods
Independent/grouping variableIndependent variableIndependent/grouping variable
One categorical with 2 independent groups2 paired groupsOne within subject factor ($\geq 2$ related groups)
Dependent variableDependent variableDependent variable
One categorical with 2 independent groupsOne categorical with 2 independent groupsOne categorical with 2 independent groups
Null hypothesisNull hypothesisNull hypothesis
H0: $\pi_1 = \pi_2$

Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.

Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:

  1. First score of pair is 0, second score of pair is 0
  2. First score of pair is 0, second score of pair is 1 (switched)
  3. First score of pair is 1, second score of pair is 0 (switched)
  4. First score of pair is 1, second score of pair is 1
The null hypothesis H0 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) = P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the null hypothesis are:

  • H0: $\pi_1 = \pi_2$, where $\pi_1$ is the population proportion of ones for the first paired group and $\pi_2$ is the population proportion of ones for the second paired group
  • H0: for each pair of scores, P(first score of pair is 1) = P(second score of pair is 1)

H0: $\pi_1 = \pi_2 = \ldots = \pi_I$

Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$
Alternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\pi_1 \neq \pi_2$
H1 right sided: $\pi_1 > \pi_2$
H1 left sided: $\pi_1 < \pi_2$

The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the alternative hypothesis are:

  • H1: $\pi_1 \neq \pi_2$
  • H1: for each pair of scores, P(first score of pair is 1) $\neq$ P(second score of pair is 1)

H1: not all population proportions are equal
AssumptionsAssumptionsAssumptions
  • Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
    • Significance test: number of successes and number of failures are each 5 or more in both sample groups
    • Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
    • Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
Test statisticTest statisticTest statistic
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2.
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$
$X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.
If a failure is scored as 0 and a success is scored as 1:

$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$

Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.

Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.
Sampling distribution of $z$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $Q$ if H0 were true
Approximately the standard normal distribution

If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom.

If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.

If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom
Significant?Significant?Significant?
Two sided: Right sided: Left sided: For test statistic $X^2$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If $b + c$ is small, the table for the binomial distribution should be used, with as test statistic $b$:
  • Check if $b$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $b$ and check if it is equal to or smaller than $\alpha$
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$n.a.n.a.
Regular (large sample):
  • $(p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}}$
    where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
  • $(p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}}$
    where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
--
Equivalent toEquivalent toEquivalent to
When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels.Friedman test, with a categorical dependent variable consisting of two independent groups.
Example contextExample contextExample context
Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?
SPSSSPSSSPSS
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Analyze > Descriptive Statistics > Crosstabs...
  • Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the McNemar test
Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
  • Put the $k$ variables containing the scores for the $k$ related groups in the white box below Test Variables
  • Under Test Type, select Cochran's Q test
JamoviJamoviJamovi
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Frequencies > Independent Samples - $\chi^2$ test of association
  • Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
Frequencies > Paired Samples - McNemar test
  • Put one of the two paired variables in the box below Rows and the other paired variable in the box below Columns
Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the $k$ variables containing the scores for the $k$ related groups in the box below Measures
Practice questionsPractice questionsPractice questions