This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
One categorical with 2 independent groups
Dependent variable
Dependent variable
Dependent variable
One categorical with 2 independent groups
One categorical with 2 independent groups
One quantitative of interval or ratio level
Null hypothesis
Null hypothesis
Null hypothesis
Model chi-squared test for the complete regression model:
H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
in the regression equation
$
\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K
$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $ y = 1$ (or equivalently, the proportion of $ y = 1$ in the population) given the scores on the independent variables.
Model chi-squared test for the complete regression model:
H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
in the regression equation
$
\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K
$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $ y = 1$ (or equivalently, the proportion of $ y = 1$ in the population) given the scores on the independent variables.
H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Model chi-squared test for the complete regression model:
H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
H1 right sided: $\beta_k > 0$
H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
Model chi-squared test for the complete regression model:
H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
H1 right sided: $\beta_k > 0$
H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
Assumptions
Assumptions
Assumptions
In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
Within each population, the scores on the dependent variable are normally distributed
The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statistic
Test statistic
Test statistic
Model chi-squared test for the complete regression model:
$X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.
Likelihood ratio chi-squared test for individual $\beta_k$:
$X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
Model chi-squared test for the complete regression model:
$X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.
Likelihood ratio chi-squared test for individual $\beta_k$:
$X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2,
$s_p$ is the pooled standard deviation,
$n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.
Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For the Wald test:
If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: same procedure as for the chi-squared tests. Wald can be interpret as $X^2$
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: same procedure as for any $z$ test. Wald can be interpreted as $z$.
Two sided:
Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Right sided:
Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Left sided:
Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
Wald-type approximate $C\%$ confidence interval for $\beta_k$
Wald-type approximate $C\%$ confidence interval for $\beta_k$
$C\%$ confidence interval for $\mu_1 - \mu_2$
$b_k \pm z^* \times SE_{b_k}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
$b_k \pm z^* \times SE_{b_k}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$:
$$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$
Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.
n.a.
n.a.
Visual representation
-
-
n.a.
n.a.
Equivalent to
-
-
One way ANOVA with an independent variable with 2 levels ($I$ = 2):
two sided two sample $t$ test is equivalent to ANOVA $F$ test when $I$ = 2
two sample $t$ test is equivalent to $t$ test for contrast when $I$ = 2
two sample $t$ test is equivalent to $t$ test multiple comparisons when $I$ = 2
OLS regression with one categorical independent variable with 2 levels:
two sided two sample $t$ test is equivalent to $F$ test regression model
two sample $t$ test is equivalent to $t$ test for regression coefficient $\beta_1$
Example context
Example context
Example context
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?
Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.
SPSS
SPSS
SPSS
Analyze > Regression > Binary Logistic...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Regression > Binary Logistic...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Compare Means > Independent-Samples T Test...
Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
Continue and click OK
Jamovi
Jamovi
Jamovi
Regression > 2 Outcomes - Binomial
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > 2 Outcomes - Binomial
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
T-Tests > Independent Samples T-Test
Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
Under Tests, select Student's (selected by default)
Under Hypothesis, select your alternative hypothesis