This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables
2 paired groups
Dependent variable
Dependent variable
Dependent variable
One categorical with 2 independent groups
One categorical with 2 independent groups
One categorical with $J$ independent groups ($J \geqslant 2$)
Null hypothesis
Null hypothesis
Null hypothesis
Model chi-squared test for the complete regression model:
H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
in the regression equation
$
\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K
$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $ y = 1$ (or equivalently, the proportion of $ y = 1$ in the population) given the scores on the independent variables.
Model chi-squared test for the complete regression model:
H0: $\beta_1 = \beta_2 = \ldots = \beta_K = 0$
Wald test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H0: $\beta_k = 0$
or in terms of odds ratio:
H0: $e^{\beta_k} = 1$
in the regression equation
$
\ln \big(\frac{\pi_{y = 1}}{1 - \pi_{y = 1}} \big) = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \ldots + \beta_K \times x_K
$. Here $ x_i$ represents independent variable $ i$, $\beta_i$ is the regression weight for independent variable $ x_i$, and $\pi_{y = 1}$ represents the true probability that the dependent variable $ y = 1$ (or equivalently, the proportion of $ y = 1$ in the population) given the scores on the independent variables.
H0: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.
Here $\pi_j$ is the population proportion in category $j.$
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Model chi-squared test for the complete regression model:
H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
H1 right sided: $\beta_k > 0$
H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
Model chi-squared test for the complete regression model:
H1: not all population regression coefficients are 0
Wald test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$ (see 'Test statistic'), also one sided alternatives can be tested:
H1 right sided: $\beta_k > 0$
H1 left sided: $\beta_k < 0$
Likelihood ratio chi-squared test for individual regression coefficient $\beta_k$:
H1: $\beta_k \neq 0$
or in terms of odds ratio:
H1: $e^{\beta_k} \neq 1$
H1: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group.
Assumptions
Assumptions
Assumptions
In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
In the population, the relationship between the independent variables and the log odds $\ln (\frac{\pi_{y=1}}{1 - \pi_{y=1}})$ is linear
The residuals are independent of one another
Often ignored additional assumption:
Variables are measured without error
Also pay attention to:
Multicollinearity
Outliers
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Test statistic
Test statistic
Test statistic
Model chi-squared test for the complete regression model:
$X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.
Likelihood ratio chi-squared test for individual $\beta_k$:
$X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
Model chi-squared test for the complete regression model:
$X^2 = D_{null} - D_K = \mbox{null deviance} - \mbox{model deviance} $
$D_{null}$, the null deviance, is conceptually similar to the total variance of the dependent variable in OLS regression analysis. $D_K$, the model deviance, is conceptually similar to the residual variance in OLS regression analysis.
Wald test for individual $\beta_k$:
The wald statistic can be defined in two ways:
Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$
Wald $ = \dfrac{b_k}{SE_{b_k}}$
SPSS uses the first definition.
Likelihood ratio chi-squared test for individual $\beta_k$:
$X^2 = D_{K-1} - D_K$
$D_{K-1}$ is the model deviance, where independent variable $k$ is excluded from the model. $D_{K}$ is the model deviance, where independent variable $k$ is included in the model.
Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand.
Sampling distribution of $X^2$ and of the Wald statistic if H0 were true
Sampling distribution of $X^2$ and of the Wald statistic if H0 were true
Sampling distribution of the test statistic if H0 were true
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: approximately the chi-squared distribution with 1 degree of freedom
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: approximately the standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
chi-squared distribution with 1 degree of freedom
Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
chi-squared distribution with $K$ (number of independent variables) degrees of freedom
Sampling distribution of the Wald statistic:
If defined as Wald $ = \dfrac{b_k^2}{SE^2_{b_k}}$: approximately the chi-squared distribution with 1 degree of freedom
If defined as Wald $ = \dfrac{b_k}{SE_{b_k}}$: approximately the standard normal distribution
Sampling distribution of $X^2$, as computed in the likelihood ratio chi-squared test for individual $\beta_k$:
chi-squared distribution with 1 degree of freedom
Approximately the chi-squared distribution with $J - 1$ degrees of freedom
Significant?
Significant?
Significant?
For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Wald-type approximate $C\%$ confidence interval for $\beta_k$
Wald-type approximate $C\%$ confidence interval for $\beta_k$
n.a.
$b_k \pm z^* \times SE_{b_k}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
$b_k \pm z^* \times SE_{b_k}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
-
Goodness of fit measure $R^2_L$
Goodness of fit measure $R^2_L$
n.a.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
$R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$
There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit.
-
Example context
Example context
Example context
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?
Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes?
Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best?
SPSS
SPSS
SPSS
Analyze > Regression > Binary Logistic...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Analyze > Regression > Binary Logistic...
Put your dependent variable in the box below Dependent and your independent (predictor) variables in the box below Covariate(s)
Put the two paired variables in the boxes below Variable 1 and Variable 2
Under Test Type, select the Marginal Homogeneity test
Jamovi
Jamovi
n.a.
Regression > 2 Outcomes - Binomial
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'
Regression > 2 Outcomes - Binomial
Put your dependent variable in the box below Dependent Variable and your independent variables of interval/ratio level in the box below Covariates
If you also have code (dummy) variables as independent variables, you can put these in the box below Covariates as well
Instead of transforming your categorical independent variable(s) into code variables, you can also put the untransformed categorical independent variables in the box below Factors. Jamovi will then make the code variables for you 'behind the scenes'