Goodness of fit test  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Goodness of fit test  KruskalWallis test  Cochran's Q test  Marginal Homogeneity test / StuartMaxwell test  Spearman's rho 


Independent variable  Independent/grouping variable  Independent/grouping variable  Independent variable  Variable 1  
None  One categorical with $I$ independent groups ($I \geqslant 2$)  One within subject factor ($\geq 2$ related groups)  2 paired groups  One of ordinal level  
Dependent variable  Dependent variable  Dependent variable  Dependent variable  Variable 2  
One categorical with $J$ independent groups ($J \geqslant 2$)  One of ordinal level  One categorical with 2 independent groups  One categorical with $J$ independent groups ($J \geqslant 2$)  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
 If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 H_{0}: $\pi_1 = \pi_2 = \ldots = \pi_I$
Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$  H_{0}: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.
Here $\pi_j$ is the population proportion in category $j.$  H_{0}: $\rho_s = 0$
Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level. In words, the null hypothesis would be: H_{0}: there is no monotonic relationship between the two variables in the population.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
 If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 H_{1}: not all population proportions are equal  H_{1}: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group.  H_{1} two sided: $\rho_s \neq 0$ H_{1} right sided: $\rho_s > 0$ H_{1} left sided: $\rho_s < 0$  
Assumptions  Assumptions  Assumptions  Assumptions  Assumptions  




 
Test statistic  Test statistic  Test statistic  Test statistic  Test statistic  
$X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.  $H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i}  3(N + 1)$  If a failure is scored as 0 and a success is scored as 1:
$Q = k(k  1) \dfrac{\sum_{groups} \Big (\mbox{group total}  \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k  \mbox{block total})}$ Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores. Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.  Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand.  $t = \dfrac{r_s \times \sqrt{N  2}}{\sqrt{1  r_s^2}} $ Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.  
Sampling distribution of $X^2$ if H_{0} were true  Sampling distribution of $H$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of the test statistic if H_{0} were true  Sampling distribution of $t$ if H_{0} were true  
Approximately the chisquared distribution with $J  1$ degrees of freedom  For large samples, approximately the chisquared distribution with $I  1$ degrees of freedom. For small samples, the exact distribution of $H$ should be used.  If the number of blocks (usually the number of subjects) is large, approximately the chisquared distribution with $k  1$ degrees of freedom  Approximately the chisquared distribution with $J  1$ degrees of freedom  Approximately the $t$ distribution with $N  2$ degrees of freedom  
Significant?  Significant?  Significant?  Significant?  Significant?  
 For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
 If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 If we denote the test statistic as $X^2$:
 Two sided:
 
n.a.  n.a.  Equivalent to  n.a.  n.a.  
    Friedman test, with a categorical dependent variable consisting of two independent groups.      
Example context  Example context  Example context  Example context  Example context  
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?  Do people from different religions tend to score differently on social economic status?  Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?  Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best?  Is there a monotonic relationship between physical health and mental health?  
SPSS  SPSS  SPSS  SPSS  SPSS  
Analyze > Nonparametric Tests > Legacy Dialogs > Chisquare...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 Analyze > Correlate > Bivariate...
 
Jamovi  Jamovi  Jamovi  n.a.  Jamovi  
Frequencies > N Outcomes  $\chi^2$ Goodness of fit
 ANOVA > One Way ANOVA  KruskalWallis
 Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the $p$ value that would have resulted from the Cochran's Q test. Go to:
ANOVA > Repeated Measures ANOVA  Friedman
   Regression > Correlation Matrix
 
Practice questions  Practice questions  Practice questions  Practice questions  Practice questions  