# Goodness of fit test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Goodness of fit test
Kruskal-Wallis test
Cochran's Q test
Paired sample $t$ test
One sample $t$ test for the mean
Wilcoxon signed-rank test
Independent variableIndependent/grouping variableIndependent/grouping variableIndependent variableIndependent variableIndependent variable
NoneOne categorical with $I$ independent groups ($I \geqslant 2$)One within subject factor ($\geq 2$ related groups)2 paired groupsNone2 paired groups
Dependent variableDependent variableDependent variableDependent variableDependent variableDependent variable
One categorical with $J$ independent groups ($J \geqslant 2$)One of ordinal levelOne categorical with 2 independent groupsOne quantitative of interval or ratio levelOne quantitative of interval or ratio levelOne quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
• H0: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
• H0: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
• H0: the population medians for the $I$ groups are equal
Else:
Formulation 1:
• H0: the population scores in any of the $I$ groups are not systematically higher or lower than the population scores in any of the other groups
Formulation 2:
• H0: P(an observation from population $g$ exceeds an observation from population $h$) = P(an observation from population $h$ exceeds an observation from population $g$), for each pair of groups.
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H0: $\pi_1 = \pi_2 = \ldots = \pi_I$

Here $\pi_1$ is the population proportion of 'successes' for group 1, $\pi_2$ is the population proportion of 'successes' for group 2, and $\pi_I$ is the population proportion of 'successes' for group $I.$
H0: $\mu = \mu_0$

Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\mu = \mu_0$

Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis.
H0: $m = 0$

Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair.

Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
• H1: the population proportions are not all as specified under the null hypothesis
or equivalently
• H1: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
• H1: not all of the population medians for the $I$ groups are equal
Else:
Formulation 1:
• H1: the poplation scores in some groups are systematically higher or lower than the population scores in other groups
Formulation 2:
• H1: for at least one pair of groups:
P(an observation from population $g$ exceeds an observation from population $h$) $\neq$ P(an observation from population $h$ exceeds an observation from population $g$)
H1: not all population proportions are equalH1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $\mu \neq \mu_0$
H1 right sided: $\mu > \mu_0$
H1 left sided: $\mu < \mu_0$
H1 two sided: $m \neq 0$
H1 right sided: $m > 0$
H1 left sided: $m < 0$
AssumptionsAssumptionsAssumptionsAssumptionsAssumptionsAssumptions
• Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
• Sample is a simple random sample from the population. That is, observations are independent of one another
• Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2, $\ldots$, group $I$ sample is an independent SRS from population $I$. That is, within and between groups, observations are independent of one another
• Sample of 'blocks' (usually the subjects) is a simple random sample from the population. That is, blocks are independent of one another
• Difference scores are normally distributed in the population
• Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
• Scores are normally distributed in the population
• Sample is a simple random sample from the population. That is, observations are independent of one another
• The population distribution of the difference scores is symmetric
• Sample of difference scores is a simple random sample from the population of difference scores. That is, difference scores are independent of one another
Note: sometimes it considered sufficient for the data to be measured on an ordinal scale, rather than an interval or ratio scale. However, since the test statistic is based on ranked difference scores, we need to know whether a change in scores from, say, 6 to 7 is larger than/smaller than/equal to a change from 5 to 6. This is impossible to know for ordinal scales, since for these scales the size of the difference between values is meaningless.
Test statisticTest statisticTest statisticTest statisticTest statisticTest statistic
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.

$H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i} - 3(N + 1)$

Here $N$ is the total sample size, $R_i$ is the sum of ranks in group $i$, and $n_i$ is the sample size of group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N (N + 1)} \times \sum \frac{R^2_i}{n_i}$ and then subtract $3(N + 1)$.

Note: if ties are present in the data, the formula for $H$ is more complicated.
If a failure is scored as 0 and a success is scored as 1:

$Q = k(k - 1) \dfrac{\sum_{groups} \Big (\mbox{group total} - \frac{\mbox{grand total}}{k} \Big)^2}{\sum_{blocks} \mbox{block total} \times (k - \mbox{block total})}$

Here $k$ is the number of related groups (usually the number of repeated measurements), a group total is the sum of the scores in a group, a block total is the sum of the scores in a block (usually a subject), and the grand total is the sum of all the scores.

Before computing $Q$, first exclude blocks with equal scores in all $k$ groups.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores).

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
$t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size.

The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$.
Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic. In order to compute each of the test statistics, follow the steps below:
1. For each subject, compute the sign of the difference score $\mbox{sign}_d = \mbox{sgn}(\mbox{score}_2 - \mbox{score}_1)$. The sign is 1 if the difference is larger than zero, -1 if the diffence is smaller than zero, and 0 if the difference is equal to zero.
2. For each subject, compute the absolute value of the difference score $|\mbox{score}_2 - \mbox{score}_1|$.
3. Exclude subjects with a difference score of zero. This leaves us with a remaining number of difference scores equal to $N_r$.
4. Assign ranks $R_d$ to the $N_r$ remaining absolute difference scores. The smallest absolute difference score corresponds to a rank score of 1, and the largest absolute difference score corresponds to a rank score of $N_r$. If there are ties, assign them the average of the ranks they occupy.
Then compute the test statistic:

• $W_1 = \sum\, R_d^{+}$
or
$W_1 = \sum\, R_d^{-}$
That is, sum all ranks corresponding to a positive difference or sum all ranks corresponding to a negative difference. Theoratically, both definitions will result in the same test outcome. However:
• tables with critical values for $W_1$ are usually based on the smaller of $\sum\, R_d^{+}$ and $\sum\, R_d^{-}$. So if you are using such a table, pick the smaller one.
• If you are using the normal approximation to find the $p$ value, it makes things most straightforward if you use $W_1 = \sum\, R_d^{+}$ (if you use $W_1 = \sum\, R_d^{-}$, the right and left sided alternative hypotheses 'flip').
• $W_2 = \sum\, \mbox{sign}_d \times R_d$
That is, for each remaining difference score, multiply the rank of the absolute difference score by the sign of the difference score, and then sum all of the products.
Sampling distribution of $X^2$ if H0 were trueSampling distribution of $H$ if H0 were trueSampling distribution of $Q$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $t$ if H0 were trueSampling distribution of $W_1$ and of $W_2$ if H0 were true
Approximately the chi-squared distribution with $J - 1$ degrees of freedom

For large samples, approximately the chi-squared distribution with $I - 1$ degrees of freedom.

For small samples, the exact distribution of $H$ should be used.

If the number of blocks (usually the number of subjects) is large, approximately the chi-squared distribution with $k - 1$ degrees of freedom$t$ distribution with $N - 1$ degrees of freedom$t$ distribution with $N - 1$ degrees of freedomSampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

Sampling distribution of $W_2$:
If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true.

If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used.

Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.
Significant?Significant?Significant?Significant?Significant?Significant?
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If the number of blocks is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
• Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
• Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided:
Right sided:
Left sided:
Two sided:
Right sided:
Left sided:
For large samples, the table for standard normal probabilities can be used:
Two sided:
Right sided:
Left sided:
n.a.n.a.n.a.$C\%$ confidence interval for $\mu$$C\% confidence interval for \mun.a. ---\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}} where the critical value t^* is the value under the t_{N-1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). The confidence interval for \mu can also be used as significance test. \bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}} where the critical value t^* is the value under the t_{N-1} distribution with the area C / 100 between -t^* and t^* (e.g. t^* = 2.086 for a 95% confidence interval when df = 20). The confidence interval for \mu can also be used as significance test. - n.a.n.a.n.a.Effect sizeEffect sizen.a. ---Cohen's d: Standardized difference between the sample mean of the difference scores and \mu_0:$$d = \frac{\bar{y} - \mu_0}{s}$$Cohen's d indicates how many standard deviations s the sample mean of the difference scores \bar{y} is removed from \mu_0. Cohen's d: Standardized difference between the sample mean and \mu_0:$$d = \frac{\bar{y} - \mu_0}{s}$$Cohen's$d$indicates how many standard deviations$s$the sample mean$\bar{y}$is removed from$\mu_0.$- n.a.n.a.n.a.Visual representationVisual representationn.a. ---- n.a.n.a.Equivalent toEquivalent ton.a.n.a. --Friedman test, with a categorical dependent variable consisting of two independent groups. • One sample$t$test on the difference scores. • Repeated measures ANOVA with one dichotomous within subjects factor. -- Example contextExample contextExample contextExample contextExample contextExample context Is the proportion of people with a low, moderate, and high social economic status in the population different from$\pi_{low} = 0.2,\pi_{moderate} = 0.6,$and$\pi_{high} = 0.2$?Do people from different religions tend to score differently on social economic status? Subjects perform three different tasks, which they can either perform correctly or incorrectly. Is there a difference in task performance between the three different tasks?Is the average difference between the mental health scores before and after an intervention different from$\mu_0 = 0$?Is the average mental health score of office workers different from$\mu_0 = 50$?Is the median of the differences between the mental health scores before and after an intervention different from 0? SPSSSPSSSPSSSPSSSPSSSPSS Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square... • Put your categorical variable in the box below Test Variable List • Fill in the population proportions / probabilities according to$H_0$in the box below Expected Values. If$H_0$states that they are all equal, just pick 'All categories equal' (default) Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples... • Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable • Click on the Define Range... button. If you can't click on it, first click on the grouping variable so its background turns yellow • Fill in the smallest value you have used to indicate your groups in the box next to Minimum, and the largest value you have used to indicate your groups in the box next to Maximum • Continue and click OK Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples... • Put the$k$variables containing the scores for the$k$related groups in the white box below Test Variables • Under Test Type, select Cochran's Q test Analyze > Compare Means > Paired-Samples T Test... • Put the two paired variables in the boxes below Variable 1 and Variable 2 Analyze > Compare Means > One-Sample T Test... • Put your variable in the box below Test Variable(s) • Fill in the value for$\mu_0$in the box next to Test Value Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples... • Put the two paired variables in the boxes below Variable 1 and Variable 2 • Under Test Type, select the Wilcoxon test JamoviJamoviJamoviJamoviJamoviJamovi Frequencies > N Outcomes -$\chi^2$Goodness of fit • Put your categorical variable in the box below Variable • Click on Expected Proportions and fill in the population proportions / probabilities according to$H_0$in the boxes below Ratio. If$H_0$states that they are all equal, you can leave the ratios equal to the default values (1) ANOVA > One Way ANOVA - Kruskal-Wallis • Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable Jamovi does not have a specific option for the Cochran's Q test. However, you can do the Friedman test instead. The$p$value resulting from this Friedman test is equivalent to the$p$value that would have resulted from the Cochran's Q test. Go to: ANOVA > Repeated Measures ANOVA - Friedman • Put the$k$variables containing the scores for the$k$related groups in the box below Measures T-Tests > Paired Samples T-Test • Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line • Under Hypothesis, select your alternative hypothesis T-Tests > One Sample T-Test • Put your variable in the box below Dependent Variables • Under Hypothesis, fill in the value for$\mu_0\$ in the box next to Test Value, and select your alternative hypothesis
T-Tests > Paired Samples T-Test
• Put the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
• Under Tests, select Wilcoxon rank
• Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questionsPractice questionsPractice questionsPractice questionsPractice questions