This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
One categorical with $J$ independent groups ($J \geqslant 2$)
One categorical with 2 independent groups
One quantitative of interval or ratio level
Null hypothesis
Null hypothesis
Null hypothesis
H_{0}: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
H_{0}: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$,
the probability of drawing an observation from condition $J$ is $\pi_J$
Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:
First score of pair is 0, second score of pair is 0
First score of pair is 0, second score of pair is 1 (switched)
First score of pair is 1, second score of pair is 0 (switched)
First score of pair is 1, second score of pair is 1
The null hypothesis H_{0} is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) = P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is the same as the probability that a pair of scores switches from 1 to 0.
Other formulations of the null hypothesis are:
H_{0}: $\pi_1 = \pi_2$, where $\pi_1$ is the population proportion of ones for the first paired group and $\pi_2$ is the population proportion of ones for the second paired group
H_{0}: for each pair of scores, P(first score of pair is 1) = P(second score of pair is 1)
H_{0}: $\rho = \rho_0$
Here $\rho$ is the Pearson correlation in the population, and $\rho_0$ is the Pearson correlation in the population according to the null hypothesis (usually 0). The Pearson correlation is a measure for the strength and direction of the linear relationship between two variables of at least interval measurement level.
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
H_{1}: the population proportions are not all as specified under the null hypothesis
or equivalently
H_{1}: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis
The alternative hypothesis H_{1} is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0.
Other formulations of the alternative hypothesis are:
H_{1}: $\pi_1 \neq \pi_2$
H_{1}: for each pair of scores, P(first score of pair is 1) $\neq$ P(second score of pair is 1)
H_{1} two sided: $\rho \neq \rho_0$
H_{1} right sided: $\rho > \rho_0$
H_{1} left sided: $\rho < \rho_0$
Assumptions
Assumptions
Assumptions of test for correlation
Sample size is large enough for $X^2$ to be approximately chisquared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
Sample is a simple random sample from the population. That is, observations are independent of one another
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
In the population, the two variables are jointly normally distributed (this covers the normality, homoscedasticity, and linearity assumptions)
Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: these assumptions are only important for the significance test and confidence interval, not for the correlation coefficient itself. The correlation coefficient just measures the strength of the linear relationship between two variables.
Test statistic
Test statistic
Test statistic
$X^2 = \sum{\frac{(\mbox{observed cell count}  \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.
$X^2 = \dfrac{(b  c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.
Test statistic for testing H0: $\rho = 0$:
$t = \dfrac{r \times \sqrt{N  2}}{\sqrt{1  r^2}} $
where $r$ is the sample correlation $r = \frac{1}{N  1} \sum_{j}\Big(\frac{x_{j}  \bar{x}}{s_x} \Big) \Big(\frac{y_{j}  \bar{y}}{s_y} \Big)$ and $N$ is the sample size
Test statistic for testing values for $\rho$ other than $\rho = 0$:
$r_{Fisher} = \dfrac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1  r} \Bigg )$, where $r$ is the sample correlation
$\rho_{0_{Fisher}} = \dfrac{1}{2} \times \log\Bigg( \dfrac{1 + \rho_0}{1  \rho_0} \Bigg )$, where $\rho_0$ is the population correlation according to H0
Approximately the chisquared distribution with $J  1$ degrees of freedom
If $b + c$ is large enough (say, > 20), approximately the chisquared distribution with 1 degree of freedom.
If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.
where $r_{Fisher} = \frac{1}{2} \times \log\Bigg(\dfrac{1 + r}{1  r} \Bigg )$ and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval).
Then transform back to get the approximate $C$% confidence interval for $\rho$:
The Pearson correlation coefficient is a measure for the linear relationship between two quantitative variables.
The Pearson correlation coefficient squared reflects the proportion of variance explained in one variable by the other variable.
The Pearson correlation coefficient can take on values between 1 (perfect negative relationship) and 1 (perfect positive relationship). A value of 0 means no linear relationship.
The absolute size of the Pearson correlation coefficient is not affected by any linear transformation of the variables. However, the sign of the Pearson correlation will flip when the scores on one of the two variables are multiplied by a negative number (reversing the direction of measurement of that variable). For example:
the correlation between $x$ and $y$ is equivalent to the correlation between $3x + 5$ and $2y  6$.
the absolute value of the correlation between $x$ and $y$ is equivalent to the absolute value of the correlation between $3x + 5$ and $2y  6$. However, the signs of the two correlation coefficients will be in opposite directions, due to the multiplication of $x$ by $3$.
The Pearson correlation coefficient does not say anything about causality.
The Pearson correlation coefficient is sensitive to outliers.
n.a.
Equivalent to
Equivalent to

StuartMaxwell test, with a categorical dependent variable consisting of two independent groups
Results significance test ($t$ and $p$ value) testing $H_0$: $\beta_1 = 0$ are equivalent to results significance test testing $H_0$: $\rho = 0$
Example context
Example context
Example context
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?
Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?
Is there a linear relationship between physical health and mental health?
Put your categorical variable in the box below Test Variable List
Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
Put the two paired variables in the boxes below Variable 1 and Variable 2
Under Test Type, select the McNemar test
Analyze > Correlate > Bivariate...
Put your two variables in the box below Variables
Jamovi
Jamovi
Jamovi
Frequencies > N Outcomes  $\chi^2$ Goodness of fit
Put your categorical variable in the box below Variable
Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Frequencies > Paired Samples  McNemar test
Put one of the two paired variables in the box below Rows and the other paired variable in the box below Columns
Regression > Correlation Matrix
Put your two variables in the white box at the right
Under Correlation Coefficients, select Pearson (selected by default)
Under Hypothesis, select your alternative hypothesis