Goodness of fit test - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Goodness of fit test
McNemar's test
Sign test
Spearman's rho
Independent variableIndependent variableIndependent variableVariable 1
None2 paired groups2 paired groupsOne of ordinal level
Dependent variableDependent variableDependent variableVariable 2
One categorical with $J$ independent groups ($J \geqslant 2$)One categorical with 2 independent groupsOne of ordinal levelOne of ordinal level
Null hypothesisNull hypothesisNull hypothesisNull hypothesis
  • H0: the population proportions in each of the $J$ conditions are $\pi_1$, $\pi_2$, $\ldots$, $\pi_J$
or equivalently
  • H0: the probability of drawing an observation from condition 1 is $\pi_1$, the probability of drawing an observation from condition 2 is $\pi_2$, $\ldots$, the probability of drawing an observation from condition $J$ is $\pi_J$

Let's say that the scores on the dependent variable are scored 0 and 1. Then for each pair of scores, the data allow four options:

  1. First score of pair is 0, second score of pair is 0
  2. First score of pair is 0, second score of pair is 1 (switched)
  3. First score of pair is 1, second score of pair is 0 (switched)
  4. First score of pair is 1, second score of pair is 1
The null hypothesis H0 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) = P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the null hypothesis are:

  • H0: $\pi_1 = \pi_2$, where $\pi_1$ is the population proportion of ones for the first paired group and $\pi_2$ is the population proportion of ones for the second paired group
  • H0: for each pair of scores, P(first score of pair is 1) = P(second score of pair is 1)

  • H0: P(first score of a pair exceeds second score of a pair) = P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H0: the population median of the difference scores is equal to zero
A difference score is the difference between the first score of a pair and the second score of a pair.
H0: $\rho_s = 0$

Here $\rho_s$ is the Spearman correlation in the population. The Spearman correlation is a measure for the strength and direction of the monotonic relationship between two variables of at least ordinal measurement level.

In words, the null hypothesis would be:

H0: there is no monotonic relationship between the two variables in the population.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
  • H1: the population proportions are not all as specified under the null hypothesis
or equivalently
  • H1: the probabilities of drawing an observation from each of the conditions are not all as specified under the null hypothesis

The alternative hypothesis H1 is that for each pair of scores, P(first score of pair is 0 while second score of pair is 1) $\neq$ P(first score of pair is 1 while second score of pair is 0). That is, the probability that a pair of scores switches from 0 to 1 is not the same as the probability that a pair of scores switches from 1 to 0.

Other formulations of the alternative hypothesis are:

  • H1: $\pi_1 \neq \pi_2$
  • H1: for each pair of scores, P(first score of pair is 1) $\neq$ P(second score of pair is 1)

  • H1 two sided: P(first score of a pair exceeds second score of a pair) $\neq$ P(second score of a pair exceeds first score of a pair)
  • H1 right sided: P(first score of a pair exceeds second score of a pair) > P(second score of a pair exceeds first score of a pair)
  • H1 left sided: P(first score of a pair exceeds second score of a pair) < P(second score of a pair exceeds first score of a pair)
If the dependent variable is measured on a continuous scale, this can also be formulated as:
  • H1 two sided: the population median of the difference scores is different from zero
  • H1 right sided: the population median of the difference scores is larger than zero
  • H1 left sided: the population median of the difference scores is smaller than zero
H1 two sided: $\rho_s \neq 0$
H1 right sided: $\rho_s > 0$
H1 left sided: $\rho_s < 0$
AssumptionsAssumptionsAssumptionsAssumptions
  • Sample size is large enough for $X^2$ to be approximately chi-squared distributed. Rule of thumb: all $J$ expected cell counts are 5 or more
  • Sample is a simple random sample from the population. That is, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
Note: this assumption is only important for the significance test, not for the correlation coefficient itself. The correlation coefficient itself just measures the strength of the monotonic relationship between two variables.
Test statisticTest statisticTest statisticTest statistic
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells.
$X^2 = \dfrac{(b - c)^2}{b + c}$
Here $b$ is the number of pairs in the sample for which the first score is 0 while the second score is 1, and $c$ is the number of pairs in the sample for which the first score is 1 while the second score is 0.
$W = $ number of difference scores that is larger than 0$t = \dfrac{r_s \times \sqrt{N - 2}}{\sqrt{1 - r_s^2}} $
Here $r_s$ is the sample Spearman correlation and $N$ is the sample size. The sample Spearman correlation $r_s$ is equal to the Pearson correlation applied to the rank scores.
Sampling distribution of $X^2$ if H0 were trueSampling distribution of $X^2$ if H0 were trueSampling distribution of $W$ if H0 were trueSampling distribution of $t$ if H0 were true
Approximately the chi-squared distribution with $J - 1$ degrees of freedom

If $b + c$ is large enough (say, > 20), approximately the chi-squared distribution with 1 degree of freedom.

If $b + c$ is small, the Binomial($n$, $P$) distribution should be used, with $n = b + c$ and $P = 0.5$. In that case the test statistic becomes equal to $b$.

The exact distribution of $W$ under the null hypothesis is the Binomial($n$, $P$) distribution, with $n =$ number of positive differences $+$ number of negative differences, and $P = 0.5$.

If $n$ is large, $W$ is approximately normally distributed under the null hypothesis, with mean $nP = n \times 0.5$ and standard deviation $\sqrt{nP(1-P)} = \sqrt{n \times 0.5(1 - 0.5)}$. Hence, if $n$ is large, the standardized test statistic $$z = \frac{W - n \times 0.5}{\sqrt{n \times 0.5(1 - 0.5)}}$$ follows approximately the standard normal distribution if the null hypothesis were true.
Approximately the $t$ distribution with $N - 2$ degrees of freedom
Significant?Significant?Significant?Significant?
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
For test statistic $X^2$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
If $b + c$ is small, the table for the binomial distribution should be used, with as test statistic $b$:
  • Check if $b$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $b$ and check if it is equal to or smaller than $\alpha$
If $n$ is small, the table for the binomial distribution should be used:
Two sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find two sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Right sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find right sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$
Left sided:
  • Check if $W$ observed in sample is in the rejection region or
  • Find left sided $p$ value corresponding to observed $W$ and check if it is equal to or smaller than $\alpha$

If $n$ is large, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
Two sided: Right sided: Left sided:
n.a.Equivalent toEquivalent ton.a.
- Two sided sign test is equivalent to -
Example contextExample contextExample contextExample context
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$?Does a tv documentary about spiders change whether people are afraid (yes/no) of spiders?Do people tend to score higher on mental health after a mindfulness course?Is there a monotonic relationship between physical health and mental health?
SPSSSPSSSPSSSPSS
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
  • Put your categorical variable in the box below Test Variable List
  • Fill in the population proportions / probabilities according to $H_0$ in the box below Expected Values. If $H_0$ states that they are all equal, just pick 'All categories equal' (default)
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the McNemar test
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Sign test
Analyze > Correlate > Bivariate...
  • Put your two variables in the box below Variables
  • Under Correlation Coefficients, select Spearman
JamoviJamoviJamoviJamovi
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
  • Put your categorical variable in the box below Variable
  • Click on Expected Proportions and fill in the population proportions / probabilities according to $H_0$ in the boxes below Ratio. If $H_0$ states that they are all equal, you can leave the ratios equal to the default values (1)
Frequencies > Paired Samples - McNemar test
  • Put one of the two paired variables in the box below Rows and the other paired variable in the box below Columns
Jamovi does not have a specific option for the sign test. However, you can do the Friedman test instead. The $p$ value resulting from this Friedman test is equivalent to the two sided $p$ value that would have resulted from the sign test. Go to:

ANOVA > Repeated Measures ANOVA - Friedman
  • Put the two paired variables in the box below Measures
Regression > Correlation Matrix
  • Put your two variables in the white box at the right
  • Under Correlation Coefficients, select Spearman
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questionsPractice questionsPractice questions