Goodness of fit test - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Goodness of fit test | One sample $t$ test for the mean |
|
---|---|---|
Independent variable | Independent variable | |
None | None | |
Dependent variable | Dependent variable | |
One categorical with $J$ independent groups ($J \geqslant 2$) | One quantitative of interval or ratio level | |
Null hypothesis | Null hypothesis | |
| H0: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | |
Alternative hypothesis | Alternative hypothesis | |
| H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$X^2 = \sum{\frac{(\mbox{observed cell count} - \mbox{expected cell count})^2}{\mbox{expected cell count}}}$
Here the expected cell count for one cell = $N \times \pi_j$, the observed cell count is the observed sample count in that same cell, and the sum is over all $J$ cells. | $t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $s$ is the sample standard deviation, and $N$ is the sample size. The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | |
Sampling distribution of $X^2$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
Approximately the chi-squared distribution with $J - 1$ degrees of freedom | $t$ distribution with $N - 1$ degrees of freedom | |
Significant? | Significant? | |
| Two sided:
| |
n.a. | $C\%$ confidence interval for $\mu$ | |
- | $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | |
n.a. | Effect size | |
- | Cohen's $d$: Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | |
n.a. | Visual representation | |
- | ![]() | |
Example context | Example context | |
Is the proportion of people with a low, moderate, and high social economic status in the population different from $\pi_{low} = 0.2,$ $\pi_{moderate} = 0.6,$ and $\pi_{high} = 0.2$? | Is the average mental health score of office workers different from $\mu_0 = 50$? | |
SPSS | SPSS | |
Analyze > Nonparametric Tests > Legacy Dialogs > Chi-square...
| Analyze > Compare Means > One-Sample T Test...
| |
Jamovi | Jamovi | |
Frequencies > N Outcomes - $\chi^2$ Goodness of fit
| T-Tests > One Sample T-Test
| |
Practice questions | Practice questions | |